IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Graduate Theses and Dissertations .)
Dissertations

2009

Development and evaluation of Formula Editor (a
tool-based approach to enhance reusability in
software product line model checking) on SAFER
case study

Sandeep Krishnan
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Krishnan, Sandeep, "Development and evaluation of Formula Editor (a tool-based approach to enhance reusability in software product
line model checking) on SAFER case study" (2009). Graduate Theses and Dissertations. 10322.
https://lib.dr.iastate.edu/etd /10322

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital

Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10322&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10322&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10322?utm_source=lib.dr.iastate.edu%2Fetd%2F10322&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Development and evaluation of Formula Editor (a tool-based approach to enhance
reusability in software product line model checking) on SAFER case study

by

Sandeep Krishnan

A thesis submitted to the graduate faculty
in partial fulfilment of requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science
Program of Study Committee:
Robyn R. Lutz, Major Professor

Vasant Honavar
Samik Basu

lowa State University
Ames, lowa
2009

Copyright © Sandeep Krishnan, 2009. All rights reserved.

www.manharaa.com

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES
ACKNOWLEDGEMENTS
ABSTRACT

CHAPTER 1. INTRODUCTION

CHAPTER 2. RELATED WORK
2.1 Software product lines
2.2 Model Checking
2.3 Model checking Software product lines

CHAPTER 3. FORMULAEDITOR ONSAFERPRODUCT
3.1 Improvements to previous FormulaEditor version
3.1.1 Background of FormulaEditor
3.1.2 Background of Computation Tree Logic (CTL)
3.1.3 Enhancements to previous version of FormulaEditor
3.2 Evaluation of FormulaEditor on SAFER

CHAPTER 4. FORMULAEDITOR ONSAFERPRODUCT LINE
4.1 Proposed SAFER product line
4.2 Results of FormulaEditor on SAFER product line

CHAPTER 5. CONCLUSION AND FUTURE WORK
BIBLIOGRAPHY

APPENDIX
CMU-SMV Model for the original SAFER product
Property set for Original SAFER model
CMU-SMV Model for Base-SAFER
CMU-SMV Model for Base-SAFER-Cruise
CMU-SMV Model for AAH-SAFER
CMU-SMV Model for AAH-SAFER-Cruise

vii

0o~ ~

11
11
11
14
15
25

46
46
54
69
71

75
75
78
82
83

89

www.manaraa.com

ii
LIST OF FIGURES

Figure 1: FormulaEditor Architecture

Figure 2: Verification of AF and EF properties

Figure 3: Verification of AU and EU properties
Figure 4: Tree view of FormulaEditor with CMU-SMV
Figure 5: Automatic Attitude Hold State Diagram
Figure 7: Pattern Creation

Figure 8: Saving the Pattern

Figure 9: Reusing the pattern

Figure 10: Using saved pattern

Figure 11: Instantiating saved pattern

Figure 12: Atom Selection

Figure 13: Use of selected atoms in property sjpatibn

Figure 14: Uses relationship for SAFER product line

12

19

21

32

27

34

35

35

36

37

38

39

52

www.manaraa.com

LIST OF TABLES

Table 1: AAH property classification

Table 2: Commonalities, Variabilities, and Paramsetd Variation
Table 3: SAFER modules

Table 4: Mapping from parameters of variation tadorles

Table 5: Decision Table for SAFER

28

50

51

51

53

www.manharaa.com

ACKNOWLEDGEMENTS

| would like to take this opportunity to express my sincere thankisogetwho
have helped me with various aspects of conducting this research andtithg of this
thesis. First and foremost, | would like to thank Dr. Robyn R. Luthésroutstanding
guidance, patience and support throughout this research and in tihg wfithis thesis.
Her constant motivation and creative insights have highly encouraged aonducting
this research. | would also like to thank her for providing me witlfiasorable
environment for conducting this research.

This research has been possible because of the generous suppay peoye.
Ben Di Vito provided us with the SMV code and CTL specificationdlierSAFER case
study. The CMU-SMV tool was provided by Carnegie Mellon Universityr lab’s
collaboration with Avaya Labs Research helped us to think of thercbsgablems and
solutions in an industrial setting. Particularly, 1 would like tanth®r. David Weiss, Dr.
Birgit Geppert, and Dr. Frank RORl&r their support in this research. | would like to
thank National Science Foundation (grant 0541163), the Department of Computer
Science, and lowa State University for their financial support in thesrels.

| would like to thank my committee members Dr. Samik Basu andvBsant
Honavar for their encouragement and help. The course on formal methodsl biyeDr.
Basu provided a strong base for conducting this research and degdiopisoftware. |
would like to thank all the other members of the Laboratory of Saét&afety: Janet

Liu, Hongyu Sun, Jonathan Schroeder, Yogesh Nadkarni, Sudhindra NagaratiTirup

www.manaraa.com

Vi

Their constructive criticism, timely suggestions and moral suppag helped me
immensely to remain enthusiastic during this research.

| would also like to thank Cindy Marquardt, Maria-Nera Davispdashen, and
Jim Schlosser for their administrative support. | would like to affgrspecial thanks to
Linda Dutton who has helped me in managing all the paperwork needed thy stay
as a graduate student. Her enthusiasm and smile have always brightened my day

| am extremely grateful to Dr. Kasthurirangan Gopalakrishnan, @dh&rtha
Khaitan, Ankit Agrawal, Abhisek Mudgal and Sparsh Mittal, Venkat Krishi&ddharth
Jain, Amit Pande, Ganesh Ram Santhanam, Sivakumar Swaminathan, CledaeeH
and Tanay Kishorewani for their unwavering support and encouragement hetoed
me to maintain my focus and enthusiasm in this research. | ayngvateful to my
parents Mr. M. S. Krishnan and Mrs. Jayalakshmy Krishnan and my bidth&atish

Krishnan for their love and moral support throughout my studies.

www.manaraa.com

vii

ABSTRACT

Although model checking is extensively used for verification oflsisgftware
systems, currently there is insufficient support for model chedkimoduct lines. The
presence of commonalities within the different products in the prochéctdquires that
the properties and the corresponding specifications for these prepastieerified for
every product in the product line. Specification and management ofrpespier every
product in a product line can incur high overhead and make the task of chedking
very difficult. It is hence essential to exploit the presentecommonalities to our
advantage by providing reusability in model checking of product lineseSlifferent
products in the product line need to be checked for same or sinolaerpes, reuse of
properties specified for one product for other products within a produoet Wil

significantly reduce the overall property specification and verificatioa.t

FormulaEditor is a property specification and management tool faneity the
reusability of model checking of software product lines. The obithe technique is a
product line-oriented user interface to guide users in generagiegtiag, managing, and
reusing useful product line properties, and patterns of propertiesofiel checking. The
previous version of the FormulaEditor tool supports Cadence SMV modelsotbtite
typical CMU-SMV models. This work extends the FormulaEditor toml atlow
verification of models written in CMU-SMV. The advantage of providingp®rt to
another model checker is twofold: first, it enhances the toapslaility to check design
specifications written in different models; and second, it allesess to specify the same

design in different modeling languages to detect problems.

www.manaraa.com

CHAPTER 1. INTRODUCTION

It is becoming increasingly important to manage related producteasbers of a
product line. Product lines provide successful reuse of assets andcessauthin an
organization. A software product line is “a set of software-imtensystems sharing a
common, managed set of features that satisfy the particulds méea specific market
segment or mission and that are developed from a common seteofagsets in a
prescribed way” [17]. In a product line [42], the common requirementshwdrie to be
met by all the products are callesbmmonalities The set of allowable differences
amongst the products are called theariations A wide variety of companies have
decreased their software development and maintenance costs andarsously
increased the quality of their products by the use of software prbdest The use of
software product lines is also increasing in the field of gafietical systems created in

organizations such as NASA, GE, Avaya, etc.

Undoubtedly, the development of product lines also has led to the need fo
verification of the different products in the product line to ensuae tthe requirements
for the product line are satisfied by the individual products. Vatiba that a new
system built in a product line satisfies common properties talees/ forms including
inspection, state-based simulation and testing [42], [1], [31]. Howé&wese techniques
do not provide the necessary assurance needed for productsaim cafety critical
domains. Model checking is a rigorous verification technique that erdh#meeguality of
software systems [13], e.g., by identifying flaws that would nate been caught

otherwise ([24], [28]). Models for the software system are evritin verification

www.manaraa.com

languages like SMV [8], [33], SPIN [26], etc. and properties peeifed for the model.

The model checkers verify these properties against the provided model.

Although model checking is extensively used for verification oflsisgftware
systems, currently there is insufficient support for model chedgkipgoduct lines, most
specifically, for property specification and management [32]. Tmesence of
commonalities among different products in a product line requires s$hah
commonalities be verified for every product in the product line.ci8pation and
management of property for every product in a product line can imghroverhead and
make the task of model checking very difficult. It is hence esdettt exploit the
presence of commonalities to our advantage by providing reusabilitydel checking
of product lines. Since different products in the product line need to bkethéor same
or similar properties, specifying the properties for one producteursing them for other
products within the product line will significantly reduce the oleroperty
specification and verification time. The difficulty with reusecss a produce line is that
the variations among the products can complicate the implementatioredfication of

the properties.

Product line verification, like product line engineering in gehdrees to reuse
whatever is common across the product line to reduce the cost arasetne quality of
each new product [32]. Thus product line verification urges reuse, eghdlyl the
presence of commonalities and simultaneously provides very carahdgement of that

reuse, demanded by the presence of variations among the products.

www.manaraa.com

FormulaEditor is a property specification and management tool fanenty the
reusability of model checking of software product lines. It wagirally developed by
Jing Liu in work initiated while on an internship at Avaya Rededrabs under the
guidance of Birgit Geppert, Frank Rossler and David Weiss [32], the technical

report for FormulaEditor, describes FormulaEditor as follows:

“The core of the technique is a product line-oriented user interfagaitte users
in generating, selecting, managing, and reusing useful product line properties, and
patterns of properties for model checking. The tool also associates the propertidgewith t
requirements, models and verification results of each product in the prinkeiso that

any changes can be readily traced and the properties updated accordingly.”

The previous version of the FormulaEditor tool supports Cadence SMV models
but not the typical CMU-SMV models. Cadence SMV [10] is an extension of CMU-SMV
[34]. Cadence SMV has more expressive mode description languageasulsupports
synthesizable verilog as a modeling language, allowing RTigme$o be verified [9]. In
addition, Cadence SMV allows several forms of specificationudicy the temporal
logics CTL and LTL, finite automata, embedded assertions, and refiiem
specifications. The previous version of FormulaEditor with Cadence @&b/tested on
two product lines, the first being a family of communication protott@s resulted from
an Avaya refactoring project and secondly on a cardiac pacenmkduct line.
However, the tool’'s provision to support a single model checker foraed tes specify
Cadence-SMV models. By providing users with the flexibility ohgsmultiple model

checkers, the effectiveness of the FormulaEditor would be increased.

www.manaraa.com

Contributions:

1. The first key contribution of this thesis is thus to extend thenk@Editor tool to
allow verification of models written in CMU-SMV. The need to extethe
FormulaEditor to include CMU SMV as the second model checker cametfie effort

to model check legacy systems and their extensions. A Legaaymsy8] becomes
especially important when the cost incurred in redesigning orciagldhe system is
large. An example of legacy systems is the prevalent usbeoNASA technologies
developed two or three decades ago. Such technologies have alreadytembmple
expensive integration and certification requirements for use aypchew technology
would have to go through the entire process which would require erdetests.
However, if any extension to an existing system is to be madg tie legacy code of
the system, verification of the extended system is necessangtioe that the changes are
safe. Cadence SMV being a successor of CMU-SMV, it would Herplde to model
check new systems using Cadence SMV. However, system denelog® are
comfortable developing models in CMU-SMV may prefer to use CBMY if the

features of CMU-SMV prove to be sufficient.

Our motivation to extend FormulaEditor to include model checking using/-CM
SMV was thus twofold: first, to provide the benefit of model checkeagaty system
extensions which are modeled in CMU-SMV; and second, to allow modekingeof
newer systems modeled in CMU-SMV. The work on extending FormulaEdisupport
CMU-SMV was started as a part of the previous version. Howevenngiiementation
was not complete and several errors also had to be corrected irtoeteure that the

new version functioned correctly.

www.manaraa.com

2. The second key contribution of this thesis is to provide an initidliatian of the
use of the expanded FormulaEditor in a product line setting by tismgpecify several
properties for a simplified product of manned maneuvering units ché&8A¢-ER. The
SAFER product is then evolved into a product line by introducing vamst This
product line is then used as a test-bed for testing the improvemesde to
FormulaEditor. The product line models are specified in CMU-SMid, FormulaEditor

is used to specify and verify the commonalities and variations for this product line.

Tests on the improvements to FormulaEditor show important advantages of
FormulaEditor. The test results show reduction in specification arficagon time by
the use of FormulaEditor. Reuse of similar patterns and dynamianiiagion of
properties provide flexibility in property specification. Formuld&difeatures provide
ease of property specification and reuse of properties both withkingke product and
among multiple products in the product line. Advantages such as fl@etida in the
underlying model by analysis of the generated false positivedats®l negatives, and

ability to adapt to evolution of product lines are provided by FormulaEditor.

The rest of this thesis is organized as follows. Chapter 2 proardesaluation of
the FormulaEditor tool. Specifically, it describes the problemstiag in the previous
version of FormulaEditor, explains the solutions implemented to address thesgardues
provides an evaluation of FormulaEditor on the SAFER (Simplified Aid BYA
Rescue) case study [22] as a single product. In [2] Ben Di Vito explaiagppiieation of
PVS theorem proving technique to verify the properties of SAFER. iewluation of
FormulaEditor we demonstrate the effectiveness of FormulaEditorproperty

verification for SAFER. We corroborate our claim that FormuledEdorovides better

www.manaraa.com

ease and flexibility for specification and verification of s properties than the
approach taken by Ben Di Vito. We evaluate and explain how the indivpdoperty
specification for each model needed in the theorem proving techmsqgtezlious as
compared to the reusable property specification technique provided lB&ditor.
Chapter 3 describes the potential evolution of a product line for SA#kEh is used as
the test-bed for testing FormulaEditor. In both Chapter 2 and Chapterf8cus on the
reusability aspect of FormulaEditor and look at it from two aspeetsability within a
product and reusability within the product line. Chapter 4 explain®edeladrk. Chapter

5 describes future work and Chapter 6 concludes the thesis.

www.manaraa.com

CHAPTER 2. RELATED WORK

In this section, we discuss the literature survey for the topissfokare product

lines, model- checking and the use of model checking to verify software prodsct line

2.1 Software product lines

Significant work has been carried out on the topic of software proded. |
Research in the field of product lines was motivated by the vigiosaccess of
CelsiusTech Systems AB, a long-time European defense contrmactioe 1980s. The
case study is explained in [35]. CelsiusTech was faced wittigr®ma of building two
large command and control systems, each larger than anythinth¢habmpany had
attempted before, and it had barely enough resources to build doeisTech laid the
foundation for the massive use of product lines in industries. CompanteasiBoeing
[18], Nokia [25], Philips [44], Hewlett Packard [41] and many cthkave used the
concept of product lines to build their products in an efficient marffr@duct lines
enable the reuse of the common requirements among the products. Retise of
underlying architecture, requirements and the algorithms and safatysis reduce the
overall production time while simultaneously providing better qualitytiie products.
Studies suggest that product line engineering can reduce thel aeralopment and
production time and the production cost while improving the quality bgtarfaf 10 or

more [38].

Extensive work to understand the features of product lines, to faertakm, to
develop efficient methods to utilize the commonalities in produesliand on product

line engineering have been carried out. Several textbooks have bim wn the

www.manaraa.com

subject of software product lines. Some of the prominent oned &e[23], [35], and
[42]. Weiss and Lai [42] describe an approach for developing prddosties called
Family-Oriented Abstraction, Specification and Translation (FA&pproach. This
approach is based on investing resources in the early design of a set o$ $gsteEmtify
their commonalities and variabilities. The FAST approach advocaiss strategy
because it claims that the high investments of resources ieathe design stages are
amortized over the set of product line members that are prodilbed=AST approach
partitions the design and development of a product into two phases: demgaieering
and application engineering. The goal of the domain engineering ph&sdiss the
product line requirements, define its design and architecture antifydether software
engineering assets that pertain to the entire product line [4@3. @rocess requires
domain knowledge and skilled experts [17], [35]. This is an investpigae which
allows the practitioners to quickly realize a variety of produatisin the product line for
a competitive advantage. The goal of the application engineering ghasduild the
product line member(s) from the product line requirements identiiiethg the domain
engineering phase [42]. The new product is built by selecting valudisef parameters of

variation and defining the constraints among the selected variabilities.

2.2 Model Checking
Extensive work on model checking has been conducted to date. Temporal-logic
model checking ([12], [16], [30], [36], [39]) is a method for verifying whether a
specification is satisfied by a finite-state program. Clarke. €f11]) presented a model
checking algorithm for propositional branching-time temporal logic CTL. Tdarithm

was used to verify a simple version of the alternating bit protocol with 20 states. Si

www.manaraa.com

then, the size of the programs that have been verified by this means has increased
dramatically. Special programming languages [26], [33] have been devetogmeck
examples with several thousand states. The use of binary decision diagrddss (5D
led to the ability to verify programs of greater size. Representing toamsglations
implicitly using BDDs made it possible to verify models that would have requiréd 10
states with the original version of the algorithm [6]. Refinements of the B3Bdba

techniques [7] pushed the state count up ovE¥ states.

2.3 Model checking Software product lines

Existing work has indicated the possibility of successfully conducting model
checking for software product lines. Kishi and Noda [40] proposed an approach that
models product line variations in UML models and then translated them into SPIN
models. Li, Krishnamurthi, and Fisler [29] have exploited compositional verdicati
the product line context by automatically checking interfaces of sefasdtees using
the labeling algorithm in CTL model checking. Robby, Dywer, and Hatcliff [izwe
constructed Bogor, an extensible model checking framework that can beaest to
different application domains, e.g., to be used as a back-end model checker fa €ade
an integrated environment for building and modeling CORBA Component Model

systems — that can be used to develop model-driven component-based product lines.

Techniques have been developed to ease the difficulty of transiatorghal
(natural language) specifications into formal ones (e.g.poeah logic formulas [27]),
such as the Property Specification Patterns [19]. Work on reugedfisation patterns
has been conducted in recent years. Blazy, Gervais, and Laledesptibe an approach

for defining and reusing specification patterns in B languageaBhylet.al [21] describe

www.manaraa.com

10

writing reusable property specifications and the circumstanoceswhich such
specifications can be reused for the PSL language. Howeuigsa techniques, to the
best of our knowledge, the issue of management of propertyfispgon at the product
line scope remains unaddressed. Furthermore, they do not treat yprepeeification
reuse at the implementation level. Liu, et.al [32] address both tbaseerns by
implementing the reusability feature in property patterns féanaly of products in a
product line. Their application tests the reuse of property patieitien in the temporal
languages LTL and CTL for systems modeled in Cadence SMV mgdahguage. Our
work extends this work by providing additional flexibility to modeeck product lines

in multiple modeling languages.

www.manaraa.com

11

CHAPTER 3. FORMULAEDITOR ON SAFER PRODUCT

In this chapter, we describe our work to evaluate FormulaEditor 0S8ARER
case study. The evaluation describes the importance of Formulaldgpecification
and verification of properties for the single product SAFER. Alsingquirement for a
product can result in many properties, i.e., the mapping from requitgrweproperties
can be many to one. Such properties can have the same skeletorhevidtomns
(variables) being instantiated to different values. These propertie also become
complicated as we will show by examples later in this g@ectrormulaEditor provides
the convenience to reuse the properties and reduce the specifezatiorrification time
by providingproperty patternsThe goal of FormulaEditor is to provide this reusability.
This section first explains the functioning of FormulaEditor andrtiprovements to the
previous version of FormulaEditor. Further, the features of reusaligity detection and
other advantages of FormulaEditor when evaluated on the SAFER abe sse

described.

3.1 Improvements to previous FormulaEditor version

3.1.1 Background of FormulaEditor

Prior to explaining the improvements to FormulaEditor's previous versien,
give a brief description of FormulaEditor. As described eartermulaEditor is a tool
designed to increase reusability in product- line model checkingidrséction, we give
a brief description of the architecture of FormulaEditor, the diffecomponents of
FormulaEditor and their functionality. The architecture of thenfedaEditor is shown in

Figurel. FormulaEditor takes as input the product/product line model writtan BMV

www.manaraa.com

12

language and the property to be verified. It presideatures such as property
requirement mapping, property pattern reuse, dyoatom selection and flaw detecti
in the property or model. The inputs are givenh® tindelying model checker (Caden
SMV or CMU SMV). The model checker verifies the peoty against the model a
returns the verification results. FormulaEditor ¢ones all the above features and

results and displays the results to the L

FormulaEditorruns one of the twimodel checkrs: Cadence SMV and CM
SMV in the background for the verification of propes. The speed of verificatic
provided by FormulaEditor is hence dependent onsieed of the underlyinmodel
checler. The advantage that thermulaEditor provides is in the ease of specifiaa

and verification of propertie:

FormulaEditor Architecture

product-/product-line
model

Property

mmm) Results

Model +property

Figure 1: FormulaEditor Architecture

FormulaEditor has the following 4 components orgls[32].

www.manharaa.com

13

Model Panel The model panel allows the user to specify all the infoonati
associated with the model such as the output directory for tle gdaerated
during model checking, the common pattern location to allow reuse ofrgyrope
patterns, the model checker type, the location of the model cheackkethe
location of the model file.

Properties Panel Properties panel shows all the properties specified for that

model. Information associated with a specified property includestetheoral
logic formula itself, its type, description, truth value, currerdtust and the
category to which it belongs to.

Atom Selection PaneFormulaEditor recognizes the variable declarations in the

model as atoms. The states of each variable are atomic for(mdiach we call
atoms) that can be used individually or combined together with Boolematogs
or temporal operators to assess meaningful properties of shensyThe atoms
can be manually selected as per requirement from the atoantiaeliést which
displays all the atoms imé¢ model.

Property Editor Panel The property editor panel allows specification of

properties by providing the commonly used patterns and also thelefserd
common patterns for reuse. Properties can be saved after etdeimg tTwo
views, namelytext viewandtree view,are provided for editing a property. These
two views comprise th8yntax directed property editireyea. Manual editing is
also provided in thé-ree-style property editingrea. Variables selected in the
atom selection list are also displayed in this panel. Thesesatan be used in

instantiating the common or user-defined patterns.

www.manaraa.com

14

3.1.2 Background of Computation Tree Logic (CTL)

Linear Temporal Logic (LTL) and Computation Tree Logic (CTdre both
temporal logics that are used for model checking. Propertiesverlieed are written in
temporal logic and are verified against the models. LTL and Cé&livay such languages
that provide connectives that allow us to refer to the future [27h Botguages model
time as a sequence of states extending infinitely into the fulMhdle Cadence SMV
allows specification of properties in both LTL and CTL, CMU SMMws specification
only in CTL. LTL and CTL formulae are evaluated on paths. CTL isuahgeous over
LTL as it allows verification of properties which assert ease of paths. A state of a
system satisfies an LTL formula if all paths from thatestsatisfy it. Thus, LTL
implicitly quantifies universally over paths. Properties whichx nuniversal and
existential path quantifies cannot in general be model checked WBINGCTL solves
this problem by allowing us to quantify explicitly over pathewdver, there are many

LTL properties which cannot be expressed in CTL and vice versa.

The formal Backus Naur definition of CTL [27] is

¢:=L|T[pl@]@ADI@V S| (P
= @) AXp | EXP | AFP | EF$ | AGP | EGP | A[pUd] |E[9U]

The general description of the operators is as follows:

& along all paths

E & along at least one path

X & Next state

www.manaraa.com

15

F &f Some future state

G & All future states

U & Until

3.1.3 Enhancements to previous version of FormulaEditor

This section now provides detailed explanation of the improvements to
FormulaEditor’s previous version. Previously, the tool had beeedt@st models which
were written in Cadence SMV. Although the work to incorporate CMU SMV msoda$
begun, sufficient testing had not been performed and many of theefeatare untested.
The work reported here provides support to another model checker naMehy\SMV,
thereby enhancing the tool's capability to check design spawfisawritten in two
different models. It also allows the users to specify the shsign in different modeling
languages to detect problems. This document describes the enkatx@one to the
FormulaEditor tool that enables it to check CMU-SMV models in addib the existing

support to Cadence SMV models.
Specifically, this section explains in sequence:

e Suggestions to improve the design of the CMU SMV model files to be verified, and
e Detection of errors in the previous version of the tool and the implemented solutions.

Updatesin writing the mode file:

As mentioned earlier, the previous version of the tool had not been tested
models written in the CMU-SMV language and hence the tool needelification to

solve errors relating to CMU-SMV.

www.manaraa.com

16

Some of the problems faced while testing the tool on models written in CMU-SM/ wer

. Extracting variables from DEFINE bloed he FormulaEditor uses the model file

and extracts the atoms from the model and displays iRtitygerty Editor paneivhich

can then be used by the users to create properties and patternsvekiothe

FormulaEditor only displays the variables which are created invihR block and
assigned in the ASSIGN block. The tool does not display variable$ahéccreated in
the DEFINE block. This is logical since the variables definecdhénREFINE block are
usually internal variables which are created to reduce the state space.

To facilitate writing specifications which make use of thegernal variables
defined in the DEFINE block, we need to remove these variables from the DBkbKE
and define them explicitly in the VAR and ASSIGN block. For example, in thelrfilede
which is being used for testing, a variable narakkdaxes_offis defined in the DEFINE
block of the MAIN module. Since this variable is very commonlydusemany of the
specifications which were written to test the model, these prepearduld be specified
using the FormulaEditor by extracting thk_axes_off variable from the DEFINE block

and creating it in the VAR and ASSIGN block.

o Naming of variablesAn additional aspect to be taken care of when creating the

model is to define variables without any delimiters such a@unhderscore) in them. The
FormulaEditor uses the delimiter *_’ to finally convert the aynatdited formula into the
temporal formula. During this operation every _ is converteéd(tiot). Hence, in order

to avoid confusion for the FormulaEditor, it is better if we modelsysem in such a
way that the variables themselves in the model do not contain ‘*_tawese the naming

Scheme in Java where variable names having multiple words orephrage the first

www.manaraa.com

17

word in lowercase and the first letter of the subsequent wongspercase. For example,

the variable all_axes_off can be definecdb&xesOffto avoid errors.

. Defining Constants Another problem created because of switching the variables
from the DEFINE block to the VAR- ASSIGN block is as follows. 3MV, it is not
possible to define variables in the VAR block which take a constamt.vahe data types
supported by SMV are Boolean, Enums and a Sub-range. Booleatakearalues 0 or
1. Enums are a set of values and the variable can take any viilaeset. Sub-range is a
range of values that a variable can take (e.g. 0...100). Thus ivamt to define a
constant value like 10 or 100, then this can be done only in the DEF&4E lolit not in
the VAR — ASSIGN block. While specifying the properties for thedel file, we
required the use of these constant variables. To extract suahleawhich were needed
in the specifications, we expressed such a variable as an eittum single value in the
set. For example, in the model used, a variahge_ticksis extracted from DEFINE
block of mainmodule and specified in the VAR-ASSIGN block as follows

max_ticks :{ 100}

This modification enabled the use of this variable max_ticks in our specifications

o Defining variable of type sub-rang@&he simple data types in SMV éeolean

enumerate@ndsubrange If a variable is of typ®8oolean then the FormulaEditor
creates two atoms for the corresponding variable; one atom is the varitgbteueivalue
and the second is the variable with false value. For every such Boolean varitdneddec

in the model, the Atom list created by FormulaEditor for that model contains aws at

www.manaraa.com

18

For a variable of typenumerategdthe Atom list contains as many atoms for this

variable as the number of symbols in the enumerated set. Thus a variable

state: {On, Off, Standby};

will have three atoms; one for each symbol in the set.

While creating variables of subrange type, the FormulaEditor cannotyspeci

atoms for each value in the range. For example, if

count: 0..100;

it is not possible to create atoms for every value in the range of 0 to 100. Hence the
FormulaEditor gives three options for the initial and final value in the range. Thas thre
atoms are created for the value O wherentcan be equal to, greater than, or greater
than equal to zero (the minimum value in the range) and three atoomufdequal to,

less than and less than equal to 100 (the maximum value in the range). It is intportant
note that the FormulaEditor currently does not give the facility to specify piexpe

which have any other value to such a sub-range variablediket

Updates Performed to the For mulaEditor tool

The following section describes the extensions and improvements adbe

FormulaEditor tool to enable use of CMU-SMV as the underlying model checker

o EVENTUAL (F) properties in CMU-SMY The properties such &¢ andEF in

CTL were not being verified in the previous version of the toolthes property

specifications were not inserted in the model in the correct maAsea result, when

www.manaraa.com

19

verifying the property using the FormulaEditor, the CMU-SMV moctetcker in the

background returned an error.

Update After scanning the source code, the error was traced tor@etanput of the

final property to the model file. This corresponds to line 257 indth@stProperty

module inCMUSMVFileRendereclass in themodelChcking.cmuSMpackage. In this

line, instead of ‘F’, ‘N’ was being inserted into the model and héimeenodel checker

was not able to recognize this new character and returned the error.

Testing The modification was tested by specifying AF and EF ptaserusing

FormulaEditor. The modification proved to be successful as Abtand EF properties

were successfully verified providing the expected resultair€ig shows the verification

results for AF and EF properties.

Project ‘iew Help
Madel | Properties
T... Description Formula Tr... 5t E]
CTL |[{FordllPaths eventually { switches_AAH_is_button_down) 30 A F (switche. . false perifi...| s
CTL | ExistsPath eventually { switches AAH_is_hufton_down) [E F { switche. frug erifl...
v

[verify | l fibort]

| add |

[Save l

Figure 2: Verification of AF and EF properties

www.manaraa.com

20

. Verification of UNTIL (U) properties The AU and the EU i.e. th&lways

UNTIL and theExistsUNTIL properties could not be verified in the CMU-SMV version
of the FormulaEditor in the previous version. Although, the propertiesinggged into
the newly created smv file, the FormulaEditor failed to vetiky properties which had
UNTIL operators. A detailed inspection of the source code revealedax gynor while
generating theUNTIL properties. In the FormulaEditor, tHéNTIL properties were
specified using the same syntax as the other CTL propertiesh®@MU-SMV model
checker uses square brackets ‘[] I TIL properties.

Update The initCTLpatternsmethod inEditorViewer class ofpropertyEditor package

was modified to incorporate this change.

Testing After making this modification to the source code, the camess of the
modification was tested using the UNTIL property. Specificatiamsbth AU and EU
properties were fed to the FormulaEditor and the results wereveldsé\ total of 19
properties having either AU or EU connectives were verifiee fHsts confirmed that
the modification was successful and the properties were berifgpdaiving both true
and false results as expected. The screenshots displayirgsgtitis of verification of AU
and EU properties are shown in Figure 3. The first property ifighee verified that
there exists a path where the current state is AAH_Off ti@ilAAH button is in down
position and along all the paths, the next state is AAH_startedCTherepresentation

for this property is as follows

(E [(AAHState.toggle.engage = AAHOff) U ((switches.AAH = buttonDown) & (A X (
AAHState.toggle.engage = AAHStarted)))])

www.manaraa.com

21

This is an example of one of the simple properties involving theddectives
which we tested. The 19 properties which we tested included other, categli

properties. Similarly, properties including the AU connectives were afffeede

Project Wiew Help

Model | Properties

Te... | Description Formula Truth¥a,,, Status E]
CTL |(ExistsPath [(AHState_toggle_engage_is_ASHOR) until { { switthes_ASH_is_hutta. _|(E [{ A4HState toggle.e._firue brerified | A
CTL [{ForéliPaths [{ AAHState_togole_engage_is_AAHOR) until { { switches_AAH_is_butt. [[A [{ AAHState togale.e. false frerified |

’ Yerify] ’ Abort l ’ Add] ’ Save]

Figure 3: Verification of AU and EU properties

) Inability to Edit properties- The FormulaEditor provides easy access to edit the

properties. It prevents incorrect modification of properties in sughyathat when CTL
properties are being edited, the default LTL patterns in the pyogditbr panel are made
inactive so that the user accidentally does not edit CTL propevite LTL patterns and
similarly, CTL patterns are made inactive while editingLLatterns. However when
new properties were being added using the previous version of Formulatithor
CMU-SMV, the value of theTemporal Logicfield was incorrectly shown as LTL
although CMU-SMYV supports only CTL. Hence when these properties were beied;, edit

no actions could be performed as the default CTL patterns were made inactive.

www.manaraa.com

22

Update The error was noted to be in thetTemporalLogicTypeFromFormutaethod in
the CMUSMVFormulaTranslatorclass of themodelChecking.cmuSMyackage. This

was again noted and modified in the source code

Testing This change enabled the CTL properties to be edited when thatotgrsion of

the FormulaEditor is used with CMU-SMYV as the CTL defaultguat and user defined
patterns were not becoming inactive anymore. Figure 2 andeF@gwhow that the
temporal logic for the properties is correctly defined as C§campared to LTL which

was inserted earlier.

. Tree view in CMU-SMVFor property specification, the FormulaEditor provides

two views in theSyntax Directed Property Editinganel. These two views are named as
Text viewandTree view TheTree viewgives a tree hierarchy representation for the ease
of selection and initialization of atoms. The earlier version ofmataEditor could not
successfully represent thdntil properties in CTL in the Tree view. BotiJ and EU
properties in CTL resulted irefror” nodes in thelree view

Update The reason for this error was due to handling of the UNTIL pregein the
same manner as OR, AND, and IMPLIES properties were handled.diffieeance
between the UNTIL properties and the latter properties isnh@TL, UNTIL properties
are always accompanied by the connective A or E. Thus, in AU dntbBnectives, the

A and E are inseparable from U. This condition was not taken into acaodinit resulted

in error in the tree view. To incorporate this condition, the UNTibpprties were
handled separately from the AND, OR, and IMPLIES propertiesngdsawere made to
the parseExpmethod in thd’ropertyTreeclass ofPropertyEditor.propertyPangdackage

to incorporate this change.

www.manaraa.com

Testing- The modification was tested by specifying UNTIL propertiad aoting the

effects in the tree view of FormulaEditor. The modificatiors/pd successful as the tree

view for UNTIL properties were not showing error nodes anymncetiae editing of the

properties was also possible from the tree view. The modificagisults are shown in

Figure 4. It shows the tree view of the current FormulaEditor.speeification of an EU

property is demonstrated. The figure shows the ability to useigeeto specify and edit

UNTIL properties.

EIX)

Property Editor,

FF % -
TL Pattern Selection Abom Selections
CTLproperty | | AAHState ignoreHCM pitch_is_falze A
CTLpropertyl N A8H3tate ipnoreHCW yaw is true
CTLproperty2 1 AaHState ionoreHCW yaw is false
CTLproperty3 AAHState togale engage is AAHOfE B
ForallPaths always CTLproperty v C
5 | v

F .

F .

Editing

Syntay: directed property editing

Text | Tree |

\—) ExistsPathuntil
----- # AAHSEate toggle_engage_is_maHOFF
= and
switches_AAH_is_buttonDown
P T property?

Property Marne:

Translate Move Clear

Cancel

Figure 4: Tree view of FormulaEditor with CMU-SMV

www.manaraa.com

24

o Difficulty due to MAIN moduteCurrently the FormulaEditor functions as follows.

It uses the model file e.gnodel.smyextracts the atoms from the file and displays to the
user. The user can use these atoms and the LTL and CTL commansp#itereate
properties. When these created properties are saved, the FormulaiEekiies a new
.smv file, saynewmodel.smvwith the same model and the newly created property
inserted in the MAIN module in newmodel.smv as a specification. igwsnodel.smv is
given for model checking to the background model checker and thksré&®m the
model checker are displayed by the FormulaEditor.

A difficulty which was faced by the previous version of Formdi#it was that
the newly created properties were inserted after the Mibdlule of the original file
only when the MAIN module was followed by another module in the mod&lAlN
was the last module in the model being verified, then the newbtent properties were
not inserted in the newmodel.smv file and it was same as th@arigiodel.smv file.

Attempt to verify the inserted property resulted in a failure.

Update The model file which was used to test the CMU-SMV implemantaof
FormulaEditor was from the SAFER case study. This model ke earlier used with the
command-line CMU-SMV model checker to test the correctnefisegbroperties and to
demonstrate the effectiveness of FormulaEditor. As a resuthtidel already included
some properties/specifications to be verified. This model file thes used to verify
additional properties specified using the FormulaEditor. Althoughévay specified
property was not inserted into the model file as described aboventeelying CMU-
SMV model checker for FormulaEditor verified the existing propeitiethe model file

and did not result in any failure or output any errors. Hence the error went unnoticed.

www.manaraa.com

25

In our improvement work, we corrected the error by inserting the propertyhato t
model irrespective of whether MAIN is the last module in modelnot. The
insertSMVContentToFile method in CMUSMVFileRenderer class in the

modelChecking.cmuSMdackage was modified to correct this error.

Testing- An attempt to remove the existing properties in the model amdvéndy the

properties inserted using FormulaEditor into this new model resultedlune and the
detection of this error. After performing the modification, te&ting of this modification
was successful as the properties were inserted into the medglective of the position
of the MAIN module. The testing was carried out by placing M&IN module in

different locations in the model file and removing the existing ptmsein the model
file. This model file was then used as input and new properties smacified using
FormulaEditor. The verification of these properties gave the expéate/false results

instead of the N/A result which was earlier displayed.

3.2 Evaluation of FormulaEditor on SAFER

In this section, we explain the results of evaluation of FormulaEdin the
SAFER case study. We first give a brief description of SARER application we used
to evaluate the use of FormulaEditor. We then proceed to explain shksref our

evaluation.

SAFER- SAFER is a small, lightweight propulsive backpack system designerovide

self rescue capability to a NASA space crewmember sephduring Extra Vehicular
Activity (EVA) [22]. EVA is any activity performed by a psure-suited crewmember in

unpressurized or space environments [20]. SAFER provides six-degnesaddin

www.manaraa.com

26

maneuvering control. A single hand controller is used to control SA&ERations.
Propulsion is available either on demand, i.e. in response to hand coniolles, or
through an automatic attitude hold (AAH) capability. Hand controfipuis command
either translations or rotations, while attitude hold is designéding and keep rotation
rates close to zero. Figure 5 shows the Automatic Attitude Halg Biagram described
by Ben Di Vito [2]. The diagram indicates how SAFER reaztthé position of the AAH
pushbutton and several other conditions. The AAH cycle begins in theAstet®ff If
the pushbutton is in the down position, then a transition is made fAtHStartedstate.
The states pressedOnce and pressedTwice are used to modettivatdenof AAH by
a double click of the pushbutton. Timeout is a counter which ensureAAthtis
deactivated only when the pushbutton is double clicked within a period sé€ohds. If
the button is not double clicked within a period of 0.5 seconds, then thautinegriable

ensures that SAFER returns to the sted¢iOnafter the timeout.

To illustrate the feature of reusability provided by Formulaiditve
model the AAH state diagram in CMU-SMV and verify the properfor AAH on this
model using FormulaEditor. The model is given in the Appendix. The module
buttonStatehandles the switching between the six states as per the paditiom AAH
button. The button can be either in the up or down position. The rotationabexes
modeled again using a module nametCommandwhich provides three variables, one
for each of the three rotational axes yaw, pitch and roll. Thablas change values non-
deterministically. The moduldAHTransitionmaintains the values of the rotational axes

which are active and themeoutvariable.

www.manaraa.com

27

up

down

AAH Started

up

own
down

down

3 axes off (up)

up

timeout (up)

up up
down

Pressed once

down

Figure 5: Automatic Attitude Hold State Diagram [2], [22]

Ben Di Vito [2] classified the SAFER properties related toAlA¢d feature into

the following 5 categories:

1. Transition function outputs that result from specific inputs.

2. Relationships between pairs of successive states.

3. Unconditional state invariants applying to all states.

4, Hold-until invariants over sequences of states bracketed by inggand

terminating conditions.
5. Hold-until invariants concerning frames which include input, output, and

previous/next states.

www.manharaa.com

28

Ben Di Vito also provided the CTL representation of 30 propertoeghe AAH
state diagram in [2], [22], which are listed in the Appendix. Hepad these 30

properties to the above five classes as follows:

Property Number Category
P1, P2 and P3 Category 1
P4 to P9 Category 2
P10 and P11 Category 3
P12 to P20 Category 4
P21 to P30 Category 5

Table 1: AAH property classification
An example of these properties is the propertyto off direchumbered as P9
in the Appendix. This property is included in th&' 2ategory as per Ben Di Vito's

classification. The property is defined as follows.

(A G (((AAHState.toggle.engage = AAHOnN)
& (A X (AAHState.toggle.engage = AAHOff)))
-> (allAxesOff)))

Intuitively, the property states ‘It is always the casd tha@he current state is

AAHON and along all the paths, the next state is AAHOff, themplies that there is no

acceleration along all the rotational axes’.

The property verifies the transition from stal&@HOnNto the stateAAHOff Such a
direct transition occurs when all the rotational axes are tuwffedhe connectives AG
ensure that this property holds in all the states. The connectivie A3ed to refer to all

the immediate future states. The left hand side of the intiplicégs dependent only on

www.manaraa.com

29

state information and not on any input parameters and hence this pispsassified in

the 29 category.

The CMU-SMV model and the CTL properties provided by Di Vito wesed as

our inputs to the FormulaEditor and for the evaluation of FormulaEditor on SAFER.

We now explain the results of our evaluation of FormulaEditor on SAEEIR.
evaluation results were compared with the work in [2]. The reshitsved that the
features of FormulaEditor such as property patterns, dynamic atdection and

mapping of properties to their requirements reduce property specificatian time

Reusability using Pattern File

The FormulaEditor has the option of creating a pattern of a pyopdiie a
property is being specified. This property pattern can then be reéoisguecify other
properties which are similar in nature. As mentioned earlier, niag@ping from
requirements to properties can be many to one. Hence to ensuaesisiem satisfies a
particular requirement, it is necessary to ensure that gfirthperties associated with that
requirement are verified correctly. The patterns of the propegtgaved in a file called a

pattern file. We explain the idea of pattern files using examples.

Example 1
In the CMU-SMV model provided by Ben Di Vito, one of the propertiesifipd

in the model isgnore_stays_on_starting_rollhe property is given as follows:

ignore_stays_on_starting_roll :=
AG (AAH_state.toggle.engage = AAH_started &
(AX AAH_state.ignore_HCM.roll)

www.manaraa.com

30

-> | E [I(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started)) U
I(AX AAH_state.ignore_ HCM.roll) &
I(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started))]);

Intuitively, the property states that ‘It is always the cHs# if current state is
AAHStarted and along all paths in the next state if the waelkeration from the hand
controller module is ignored, then there does not exist a pathtisaich state is reached

where the roll acceleration is not ignored and the state remained in AAgtiStart

The complexity of the property is clearly visible. The speatfon of such a
property is both time consuming and error prone. Furthermore, ithargariant of this
property which also needs to be \verified which is named as

ignore_stays_off_starting_rolThis property is given as

ignore_stays_off_starting_roll :=
AG (AAH_state.toggle.engage = AAH_started &
I(AX AAH_state.ignore_HCM.roll)
-> | E [I(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started)) U
(AX AAH_state.ignore_ HCM.roll) &
I(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started))]);

Intuitively, the property states that ‘It is always the cts# if current state is
AAHStarted and along all paths in the next state if the wekeration from the hand
controller module is not ignored, then there does not exist a pathtlsaich state is

reached where roll acceleration is ignored and the state remained in &#ddSt

The difference between the two properties is small. The diffgrence is that in

the first property the variabl¢AX AAH_state.ignore_HCM.roll) is present before the

www.manaraa.com

31

implication while its negation is present after the implicataod vice versa for the
second property. It would be inconvenient to specify the entire projpeeiych case. In
both cases, the variable AAH_state.ignore_ HCM.roll is replacetsmggation. The rest
of the property remains the same. When such properties need to ten \&ghin, it

increases the property specification time.

FormulaEditor gives the convenience of creating a partiallyritiatad pattern
for a property which can be reused in the future. While spegifyyie first of these two
similar properties, the pattern file can be created. The sidpes followed while creating
a pattern are 1) Use common patterns to generate un-instantigpedties 2) Instantiate
required parameters with atoms 3) Move the partially instadt@ateperty to the ‘moved
properties’ section using the MOVE button, and 4) Save the moved fyragea pattern
in a new or existing pattern file. This saved pattern can noweused for specifying the

second property.

In this example, the pattern can be partially instantiated as follows.

Pattern =

AG (AAH_state.toggle.engage = AAH_started & Clause 1
-> | E [I(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started)) U
Clause 2 &
I(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started))]);

This pattern is partially instantiated, and only two parameteged to be
instantiated with atoms. Thus, instead of having to specify andnirse seven
parameters, the user only has to choose a single pattern amdiatstavo parameters. In

addition, the user has the flexibility to reuse this pattern for any sipribgerty.

www.manaraa.com

32

Example 2
A second example demonstrates the utility of patterns foricegrdn of SAFER
properties. We explain this example with the help of snapshots &btheulaEditor tool

for better understanding.

This property, which is named asd' rot_no_ignore_roflin the CTL properties
provided by Ben Di Vito (refer to P24 in Appendix) checks that ihe beginning of a
cycle, (a cycle starts when tAAH offstate is passed followed BAH startedstate) the
roll command is not active, then it does not become active untih#i¢ off state is

passed in a new cycle. The property is written as follows

(AG((((AAHState.toggle.engage = AAHOff)
& (A X (AAHState.toggle.engage = AAHStarted)))
& (rotGrip.roll = ZERO))
> (V(E[(!(AX(AAHState.toggle.engage = AAHOff)))
U ((AX(AAHState.ignoreHCM.roll))
& (! (A X (AAHState.toggle.engage = AAHOff))))1))))

Intuitively, the property states that ‘It is always the ctwt if there is no roll
acceleration in the beginning of the cycle, then there does mbtaegath such that the
roll acceleration from hand controller module is ignored without thee dbecoming

AAHOfT".

Another similar property which needs to be monitored is named as

“rot_cmd_ignore_roll (refer to P25 in Appendix). This property is written as

(AG((((AAHState.toggle.engage = AAHOff)
& (A X (AAHState.toggle.engage = AAHStarted)))
& !(rotGrip.roll =ZERO))

> (V(E[(!(AX(AAHState.toggle.engage = AAHOff)))
U ('(AX(AAHState.ignoreHCM.roll))

www.manaraa.com

33

& (! (A X (AAHState.toggle.engage = AAHOff))))1))))

Intuitively, the property states that ‘It is always the c#sat if there is roll
acceleration in the beginning of the cycle, then there does isdtaegath such that the
roll acceleration from hand controller module is not ignored withousthie becoming
AAHOff".

We can identify the pattern for these two properties andcaitthe pattern file
feature of Formula Editor to save this pattern and reuse it vgpgeifying similar

properties.

The pattern is as follows
(AG((((AAHState.toggle.engage = AAHOff)
& (A X (AAHState.toggle.engage = AAHStarted)))
& Clause 1)
> (!V(E[(!(AX(AAHState.toggle.engage = AAHOff)))

U Clause 2)
& (! (A X (AAHState.toggle.engage = AAHOff))))1))))

Figure 6 shows the creation of the pattern for these propertiesg Wse
highlightedmovebutton, the pattern is placed in the moved properties tab. Aaiesgl
in the first example, the four steps are followed to creatpattern. Using the common
patterns available in the CTL pattern Selection tab (as showkigiure 6), the un-
instantiated pattern is created. The un-instantiated pattethsplyed in the syntax

directed property editing area looks as follows:

(ForAllPaths alwayy (CTLpropertyl and ((ForAllPaths nextCTL property) and
CTLproperty2))implies(Not (ExistsPath [(Not (ForAllPaths neRil L property))
until (CTLpropertyl and (Not (ForAllPaths nex@TLproperty)))]))))

www.manaraa.com

34

This above un-instantiated property is then partially instantiated tise atoms
present in the Atom Selections tab (as shown in Figure 6) to prdueigeoperty shown
in Figure 6. Figure 7 shows how the pattern is saved. The pattebeaved into any
directory. This saved pattern can be added to the list of availatensaby specifying

this directory in the model panel of Formula Editor as shown in Figure 8.

Property Editor,

-
£TL Patbern Selection fy|| FrEm SRS
CTLproperty 7 AAHState ignoreHCW yaw_is_false Lo’
CTLpropertyl N AAHBtate toggle engage is_ AAHOT
CTLproperty? AAHState toggle engage is AAHStarted W
CTLproperty3 AAHState togple engage 1s AAHOn w
a~v
ForallPaths always CTLproperty fclvanced Property Selection
Ur as WL CTLrUperLy User-Added Properties | Moved Properties | Imported Propetties
orallPaths next CTLproperty
ForAllPaths [CTLproperty] until C°
ExzistsPath always CTLproperty
FyictcPath srentialle CTT nranerts
| >

Pe
Editing

Syntax directed property editing

Text | Tree

Property Mame:

Translate [[move | [aear] Cancel

aw
Free-style property editing

Save Clear

Figure 6: Pattern Creation

Figure 9 shows how the pattern is used to specify the propenieseaasily. Only
two conditions in the pattern need to be instantiated which is convasieumpared to
rewriting the entire property again. The instantiation of tlveselitions for the property
“no_rot_no_ignore_rollis shown in Figure 10. In a product line where a product with
many such similar properties is present, it becomes highly ceanteto have such

patterns.

www.manaraa.com

35

Property Editor,

-~ "
CTL Pattern Selection (A Sell=ins

CTLproperty ~ AaHState_ignoreHCIV vaw_is_false s

CTLpropertyl LY. gle er is_AAHO

CTLproperty2 AaHBtate toggle engage is AAHStarted B

CTLpropertys = AAHState toggle engage is AAHOn ha
-

ForallPaths always CTLpropertsy

ForallPaths eventually CTLproperty T —— T ST——
e 24 HICRErLy User-added Properties | Moved Properties | Imported Propertlesl
ors [¥

ForallPaths [CTLproperty] until C {2t iy

FExistsPath always CTLproperty

FwiataPath euentuafie O TT aronerts 20

Adwvanced Property Selection

< | 1} >
e
Editing
Syntax directed property editing
Text Treel
~
w
Property Nare:
r 1
-
Free-style property editing
A
~
Save Clear

Figure 7: Saving the Pattern

Formula Editor
Project Wiew Help

Maodel | Properties |

Output directory

<

Browse

Common patkern location

fad .
: [Browse] [Open File J

Model Checker Type

[oraos v|

Model Checker Location

|D:\.sandeep\research\backup\cmu-smv\smv.exe a7 | [Add]

Maodel

|D:\.sandeep\research\SAFER\Modified-Safer-for-CMU-SM\-"\safer model 1. V| [Add] [Open File J

Figure 8: Reusing the pattern

www.manharaa.com

36

B Property Editor, g@gl

Atom Selections

-
CTL Pattern Selection
EaxistsPath [CTLpropertyl until CTLproperty2 | -~
CTLproperty] and CTLproperty2
CTLpropertyl or CTLproperty2
CTLproperty] implies CTLproperty2
Mot CTLproperty

CTLproperty] equals CTLproperty2

[For&llPaths alwe: A AHStat

<

-y
Editing

Syntax directed property editing
Text | Tree

(. ForAllPaths ahwaps ((((AAHState toggle engage is AAHOE) and [ForAllFPaths next (
AAHState toggle engage iz AAHStarted) 3) amd CTLproperty2) implies (Mot (ExistsFPoth [(
Aot Fordll Paths next (A8HState toggle engage iz AAHOLT) 3) until { CTLpropertyl and (
Aot FordllPaths next (A8HState toggle engage iz AAHOY 333710000

Property Mame:

Translate Move Clear Cancel

-~

Figure 9: Using saved pattern

Dynamic Atom Selection

The FormulaEditor has another useful functionality. FormulaEditor provides
advantage to user to not remember all the variables in the sdesifidel. When the
location of the model is specified in the model panel, at runtime, (aEditor
automatically locates all the variables in the models and gspleem module-wise to
the user. The user can select the required variables (atans)tte generated list for
property specification. Also, the development of a product or a prodegtds well as
the property specification and verification of these specified pieparan be achieved in
stages. To allow separation of privileges, these tasks could loetedeby different
groups of people. For example, one set of individuals could work on theopgeesit of
a product/product line. Once this task was completed, the taslopérnpy specification

could be allocated to a different set of individuals. Further, tble o verification of

www.manaraa.com

37

these properties against the product model could be allocated td aghof individuals.
In such an environment, the tasks of product/product line development and property
specification would require these two sets of individuals to havygerexdomain
knowledge. However, the individuals who verify the properties mayeuptire expert
domain knowledge. Their task could be to report back the results of theaten to the

previous two groups.

Property Editor, |Z||E|r‘5__<|
F .. 4 .
CTL Pattern Selection (i SeleEnD
i el St ¥ AAHState activedses pitch_is_true e’
CTLproperty3 1 AAHState_activeAxes_pitch_is_false
ForAllPathe always CTLproperty AAHState_activeAxes_yaw_is_true
ForAllPathe eventually CTLproperty A4HState_activedxes_yaw_is_false
ForAllPathe next CTLproperty A4HState_ignoreHCM roll_is_true
ForAllPaths [CTLproperty] until CTLproperty AsHState ignoreHCM roll is_false
ExdstsPath always CTLproperty A4HState ignoreHCM, pitch_is_true -
EzistsPath eventually CTLproperty
. . 4
ExistsPath next CTLproperty Advanced Property Selection
ExictsPath [CTLpropertyl until CTLproperty2 User-Added Properties | Moved Properties | Imported Properties
CTLproperty] and CTLproperty2 N o—
CTLproperty]l or CTLproperty2 all Ll
CTLproperty] implies CTLproperty2
Mot CTLpropetty
CTLproperty] equals CTLproperty2
(ForsliPaths alw State toggle d __r
< | >
F . 4
Editing
Syntax directed property editing
Text | Tree
(ForAllPaths alwaps ((((A4HS3tate toggle engage iz AAHOSE) amd (ForAlPaths next (A
AsHState toggle engage is AAHStarted))) and (rotGrip roll is FFERO Y Y ixaplies (Mot (ExistsPeth [(Mot
FovrAlPaths next [AdH3tate toggle engage is AAHOSE))) wntdl ((ForANPaths next (
AaHState ignoreHCM roll_is_true)) amd (Mot (ForAlFaths next (AAHState toggle engage iz AAHOY 33010300
v
Property Mame: |
[Translate [Move] Clear Cancel
F . 4
Free-style property edting
A

Figure 10: Instantiating saved pattern

www.manaraa.com

38

FormulaEditor provides a good user interface which allows thatyatl select
the atoms dynamically when the properties are being createdie$ter can look at the
list of the atoms which are dynamically generated from rttuelel file to verify the
properties.

If a meaningful naming convention is followed by the developers ofmbeel
and the individuals who create the properties, then it will becomefeathe testers to
look at the list of the properties and dynamically select tloenstto verify these

properties.

H E X| B Atom Selection |ZHE|E|

av :
CTL Pattern Selection Aikomn Selections

CTLproperty A

CTLpropertyl -- switches
CTLproperiy2 rokrip
CTLproperty3 — o [¥] allxesOFF _js_true

FordllPaths always CTLproperty i [] allaxesCff_is_false
FordliPaths eventually CTLproperty

ForAllPaths next CTLproperty
ForallPaths [CTLproperty] until CTLpr o,
< | Hl

AW

av
Editing

Syntax directed property editing

a| Tree

[ForAllPeaths cdwaps ((CTLpropertyl and (FovAl Fths next CTLproperty 3y
irplies CTLproperty2))

v

Property Name:

[Translate [Move] Clear [Cancel]

AT
Free-style property editing

>

Save Clear
] [

Figure 11: Atom Selection

www.manaraa.com

39

In a very complicated model with hundreds of atoms, it would be vdfigutli to
remember all the names of the atoms. This facility to séhectatoms from the Atom

Selection list can provide a convenient approach to property verification.

Figure 11 and Figure 12 show the use of dynamic atom selectioy usi
FormulaEditor described above while verifying the property namezha® off direct
and numbered as P9 in the Appendix. The right window in Figure 11 showistitigeof
the variables in the specified model in a module-wise manner.gurd=il2, the atom
selections show the list of the selelcted atoms from FigureThé& property being
verified is

(A G (((AAHState.toggle.engage = AAHONn) & (A X (AAHState.toggle.engage = AAHOff)))
-> (allAxesOff)))

B Property Editor g@g|

.
CTL Patkern Selection M

Atom Selections

AnHEtate | AAHOSE

CTLproperty e =t
CTLproperty] AAHState toggle engage i AAHStarted
CTLproperty2 AfHState toggle engage is AAHOn
CTLproperty3 AAHState toggle engage iz pressedOnc

A&HBtate toggle engage is AAHClosing
AsHEtate toggle engage is_pressedTwic
AAHState tirneout_equals 100
AAHState tirneout smaller than 100 W

ForallPaths always CTLproperty
ForallPaths eventually CTLproperty

ForallPaths next CTLproperts
ForallPaths [CTLpropertyl until CTLpr o,

P > £ >
.
.
Editing
Syntax directed property editing
Text | Tree
(ForAlPaths ahwaps ((((AAHState toggle engage is AAHON) and (s
ForAllPeths next (QURSTSEE])) implies CTLproperty2))
v
Property Marne:
Translate] [Move] Clear Cancel
.
Free-skyle property editing
S
v

Save Clear

Figure 12: Use of selected atoms in property specification

www.manaraa.com

40

Finding flaws in a specified model

Apart from being advantageous for specifying properties, the Forgtitdatlso
helps in finding faults in the model specification. The results ofyueg the properties,
helps the developer understand if the model is behaving in the intendegrma@he
model uses SMV model checking to verify the properties agdiegiiven language. The
outputs from the model checker are associated with the propegderof use. All the
information pertaining to a property before its verification, wiwéification is being
carried out, and after the verification is associated with tbpepty. The information
about the property after verification includes the results of thiécation, information
about the time needed for verification and states explored, anctmteexample if
generated. FormulaEditor conveniently maps all the output informatidimet property

which can be viewed by right clicking the property in the property panel.

Failed Property

If a failed property is encountered, i.e., if a property wasiired to be satisfied
but the model checker produces a counterexample, then the Formulakekortiee
corresponding output from the model checker. This output provides a ftnradbe
specified property. The trace helps the user to track downlabeiri the model or in
specifying the properties and correct the model. This featuaeaitable because of the
underlying model checker used to verify the properties againsintbael. But the
FormulaEditor gives the user a convenient method to map the pespttthe traces

received from the FormulaEditor.

www.manaraa.com

41

Example: The detection of flaws in specification of properties is showthb following
example. Ben Di Vito identified a flaw in the original SAFB#Rdel ([22]) in his work
([2]). While verifying the AAH properties on the older version of SAFER Higatised, he
identified an incomplete specification in the model. The AAHesthagram in Figure 5
shows that when the current state pgessed_once there are two possible transitions
when theAAH_switchis in the up position. The transition can be either to &&H _orf

state or to the AAH_closing state. This transition depends on the value of the counter
timeout In the state diagram for the original SAFER version, thesitian from
“pressed_once”to “AAH_on” was not considered. Consequently, this improper
specification allowed a button-up transition, while in tpeeSsed_once’state to make a
transition to the AAH_closing” state, where a button-down transition would change the
state to pressed_twice"without considering the 0.5 second period. We recreated the
error for analyzing the use of FormulaEditor with CMU-SMV. Whslgecifying the
properties related to transition fromréssed_oncestate, we omitted this dependency on

the timeout counter in our modeling effort.

Consequently, the incorrect property that we tried to verify was

(A G (((AAHState.toggle.engage = pressedOnce)
& (switches.AAH = buttonUp))
-> (A X (AAHState.toggle.engage = AAHClosing))))

The FormulaEditor, supported by the CMU_SMV model checker, corréaty
the result as false. The error produced gave a trace on theovahgetimeout counter as

follows.

www.manaraa.com

42

state 1.2:

allAxesOff =0

switches.AAH = buttonUp
AAHState.activeAxes.roll = 1
AAHState.activeAxes.pitch =1
AAHState.activeAxes.yaw = 1
AAHState.ignoreHCM.roll = 1
AAHState.ignoreHCM.pitch = 1
AAHState.ignoreHCM.yaw = 1
AAHState.toggle.allAxesOff = 0
AAHState.toggle.stateA = AAHON
AAHState.toggle.upTransition = AAHONn
AAHState.toggle.engage = AAHStarted

-- loop starts here —
state 1.3:
switches.AAH = buttonDown

AAHState.toggle.downTransition = pressedOnce

AAHState.toggle.engage = AAHON

state 1.4:

AAHState.toggle.stateB = AAHClosing
AAHState.toggle.upTransition = AAHClosing
AAHState.toggle.engage = pressedOnce
AAHState.timeout = 100

state 1.5:
AAHState.timeout = 99

state 1.6:
AAHState.timeout =98

state 1.7:
AAHState.timeout =97

state 1.102:
AAHState.timeout = 2

state 1.103:
AAHState.timeout =1

state 1.104:

switches.AAH = buttonUp
AAHState.toggle.stateB = AAHON
AAHState.toggle.upTransition = AAHONn
AAHState.timeout =0

www.manaraa.com

43

In the above counterexample note that, from state 1.3 to 1.4, the engabkeva
(representing the 6 states of AAH state diagram) moves fstete AAHON to
pressedOnceThe button position did not change from buttonDown. In states 1.5 till
1.103, only the value of the timeout kept decrementing. In state 1.104, the position
moved to buttonUp, and the value of engage remained as pressedOnce. Htweever
property was not satisfied and the counterexample trace pointetthehaext state must
be AAHON. Evaluation of this trace points out that the transition is not only dependent on
the position of the button but also on the value of the timeout countersAduged that
the property must also include a condition on the timeout counter. Thatyrojs then

modified as follows to correct the flaw.

(AG((((AAHState.toggle.engage = pressedOnce)
& (AAHState.timeout>0))
& (switches.AAH = buttonUp))
-> (A X (AAHState.toggle.engage = AAHClosing))))

This property was verified to true. The counter-examples are prowgdtie
underlying model checker, in this case CMU-SMV. However, FormulaEgrovided
the ease of encapsulating the properties with their correspondinitsrand this provided

efficient management of properties.

Finding Design Flawsin the Model

As explained in the section of failed property, distribution of work ban
achieved by assigning different tasks to different individuals im@unstry environment.
In such cases, it is possible that the person who develops the moslelaldeke into
account certain features of the model whereas the person whéiespdw properties

includes them. The third person verifying the properties may obtaimacgrio the

www.manaraa.com

44

expected results. Such discrepancies could be reported back to theéeathsrand it
could be understood whether the flaw is in the model or in the propgextyfisation.

This can be illustrated with the following example.

In Figure 5, the AAH state diagram shows that when the AAH state AAH
orn’, then there is a transition t&\AH off state if all the three axes are off. Suppose that
the person modeling the state diagram and the person specifyipgofterties receive
the state diagram shown in Figure 5 and the person modelingateedsigram misses
this transition from AAHO to “AAHOff although the model was required to include
this transition. This would result in an incorrect model specifinatlf the person
specifying the properties for the AAH state diagram corresgiBcifies the requirement in
the property the design flaw could be identified. Similarly, theectness of the model
can be explored by specifying properties that should not beisatisf the model. One

such property can be considered below:

(A G ((AAHState.toggle.engage = AAHON)
-> (! (E X (AAHState.toggle.engage = AAHOff)))))

This property checks that if the current state A&AHMOr, then there is no path
such that the next state iI8AHOff. We expect a counterexample to be found as this
property violates the requirement that there is a path froratétte AAHO where the
next state is AAHOff. The original state diagram shows that there is a diransition
from “AAHOI to “AAHOff'. As a result, the person verifying this property will observe
that this property is verified to true although a counterexample ¢hioave been
produced. This results in identification of the design flaw, i.entlssing transition from

“AAHOI to “AAHOff. This often occurs due to incorrect description of the model or

www.manaraa.com

45

incorrect specification of the property. Here we saw an exaafplecorrect description
of the model. If the property is incorrectly specified (@eatly because of certain missing

conditions) but the model is correct, the unexpected result could hefp thetencorrect

property.

The improvements made to the FormulaEditor after incorporatingJ-SMV
have allowed additional flexibility for the user to specify medeal multiple languages
and model check them using FormulaEditor. Ease of specification aritatenn of
properties using pattern files as well as detection ofsflare two of the main advantages
of FormulaEditor. These features have been further enhanced by tlieradfliCMU-
SMV model checker to FormulaEditor. The advantages of using FormtdaHdr
specification and verification of properties on a single product have erglained
earlier in this chapter. The next chapter describes the evolutianpobduct line for

SAFER and the application of FormulaEditor on the SAFER product line.

www.manaraa.com

46

CHAPTER 4. FORMULAEDITOR ON SAFER PRODUCT LINE

FormulaEditor has been built with the aim of enhancing reusabifity
specification and verification of properties. The previous chapter disdugusability
during verification of properties for the single product of SAFER.demonstrate the
usefulness of the updates to FormulaEditor, we here propose a proéuct BAFER-
based system and use the reusability feature of FormulaEditspémification and
verification of properties. We demonstrate the usefulness of thermpdtles in the

verification of the commonalities of the product line.

4.1 Proposed SAFER product line

In Chapter 3, we examined the advantage of Formula Editor foryiwerif
properties for a single model &AFER SAFERwas designed for the sole purpose of
rescue in extra-vehicular activity. The available articles &uthnical reports on the
SAFER device explore the features of SAFER [2], [22]. Howeverttemat to develop
a product line for SAFER has been made prior to this work. In Hapter we extend

SAFER into a product line based on the maneuverabiliBAGER
SAFER Product line

The product line that we use to evaluate FormulaEditor in a product line context is
based on variations in the maneuvering capabilitBAFER We describe four products
in the product line. The products have features that are common to these @re
known ascommonalitiesfor the product line. Each product also has certain features

which are specific to it in order to accomplish a particulak tar provide specific

www.manaraa.com

47

functionality. These features are knowrnvasiabilities of the product line. In this section
we explain the essential features of each of the four produtis product line showing

the commonalities and the variabilities among the products.

The original SAFER device was designed to provide 6-degree of freedom
propulsion capacity. Maneuverability was allowed along three traomsdhtaxes namely
X, Y and Z and along three rotational axes namely yaw, pitch@hdtralso provided
the feature of Automatic Attitude Hold (AAH) which helps to brimgl &eep the rotation
rates close to zero. The primary or base product in the produdtdsi¢he mandatory
features for an Extra-Vehicular Activity (EVA) device. The pradline evolves by

adding features incrementally to the base product [23].

Our SAFERproduct line consists of the following four products:

1) Base-SAFER
2) Base-SAFER-Cruise
3) AAH-SAFER

4) AAH-SAFER-Cruise

We use thd=AST (Family-Oriented Abstraction, Specification, and Translation)
process described in [42], [43] for the generation of the membéhne SAFER product
line. This process gives a formal approach to the development ohe¢h#bers of the

product line. The different steps in tRASTprocess are

1. Commonality analysis
2. Module guide

3. Mapping from parameter of variations to modules

www.manaraa.com

48

4. Use relationship
5. Decision model table

6. Dependency graph

Step 1- Commonality Analysis: We first describe the commonalities and variabilities

for the product line as per tiRASTprocess.

Commonalities:The commonalities for the SAFER product line are adopted fram t

features of the original SAFER discussed in the previous ahi@bt¢22]. The common

features for every product in the product line are:

[C1] Every product provides a six degree-of-freedom maneuverability; tBafuslation
along the X, Y and Z direction and 3 for rotation to enable yaw, pitch and roll.

[C2] Translation commands are prioritized so that only one translatigisatexeives
acceleration, with the priority order being X, Y and then Z.

[C3] If both translation and rotation commands are present simultaneousifpmot
takes priority and translations will be suppressed. This featwapplicable to all
the products in the product line when they function in the basic modadneit

AAH nor Cruise option is selected).

These common features form the commonalities of the product linechdge
these features as they describe the maneuvering capabiB%KER. We maintain the
complexity of SAFER by retaining the six degree-of-freedoan@uvering capability

(C1). We model our systems and test them for each of the comtieanapecifically,

www.manaraa.com

49

every product in the product line is tested using FormulaEditor rify wehether the

commonalities C2 and C3 are satisfied by each of them.

Variabilitiess The SAFER product line has essentially two variatidngomatic Attitude
Hold (AAH) andCruise Control (CC)The AAH feature is the same as the one present in
the original SAFER case study. We introduce a new varialmatyed Cruise Control.
This feature enables the crewmember using this device to emabtale similar to an
auto-pilot mode. The auto-pilot mode differs from the AAH-mode llopwéng the crew-
member to maintain velocity of the device along the X, Y Andirections. The AAH
mode in the originaBAFERdevice was used to bring and keep the rotation rates close to
zero. The AAH feature automatically adjusted the orientation iggpect to the Intertial
Reference Unit (IRU). Also, th&AFER case study ([22]) explains that translation
commands have to be explicitly given to continue motion in a partidirection as the
AAH module handles the orientation about the rotation axes and nottranal axes.
We extend this feature to the translational axes. In the CC ntlbdetranslational
accelerations of the device are maintained until acceleratigiven along any of the 3
axes, namely X, Y and Z. Rotation has to be given explicitipamtain the orientation

of the device.

Table 2 gives a compact format of the commonalities, variabilities anochetmes

of variation for the SAFER product line.

Commonalities

Cl Six degrees-of-freedom

C2 Prioritized translation

www.manaraa.com

50

C3 Rotation to translation priority
Variabilities
\i AAH mode
V2 Cruise mode
Parameters of variation
PV1 AAH: present, absent
PV2 Cruise: present, absent

Table 2: Commonalities, Variabilities, and Parameters of Variation

Step 2- Module quide: After the commonality analysis, the second step is thei@neatt

the module guide. The module guide lists the modules in the produdtlithe. case of a

hierarchical model, the module guide describes the module hierarohly shows how

modules are decomposed into submodules for information hiding. The produtttaine

we are developing has variations based on the maneuverability adethee. The

modules that we are interested in are hence related to theivesaalality aspect of the

product. In general, the device allows rotation and translation capahiligddition it

also provides the AAH and the crusie capabilties, and the modulelpisdéne modules

for all these features.

Module List| Name
M1 Translation
M2 Rotation

www.manaraa.com

51

M3 AAH-transition

M4 Cruise-transition

Table 3: SAFER modules
The modules M1 and M2 handle the commonality requirements for providing
maneuverabiltiy along the six directions. The modules M3 and M4 prdvedAAH and

cruise functionalities respectively.

Step 3 - Mapping from Parameter of Variationsto modules. We give a mapping from

the parameters of variation to the modules. We have two vaiediliand their
parameters have boolean values of present or absent. Table 4 dekeritb@pping from

the parameters of variation to the corresponding modules.

Parameter of Modules

Variation

PV1.present| M1, M2, M3

PV1l.absent | M1, M2

PV2.present| M1, M2, M4

PV2.absent | M1, M2

Table 4: Mapping from parameters of variation to modules

www.manaraa.com

52

Step 4- Uses Relationship: The next step is to show the uses relationship gntbe

modules. As shown in the module guide our focusnigour modules namely M1, M

M3 and M4.

The translation module is used by cruise transitredule and since translati
uses the rotation modi, the rotation module is indirectly used by theiseutransitior
module. Irrespective of whether cruise or AAH optis present in the product, t

translation and rotation modules will be used k&/dbvice

Cruise AAH
transition transition

Translation

Rotation

Figure 13 Uses relationship for SAFEproduct line

Step 5 - Decision model table: After describing the uses relationship, we genetiags

decision model table by extending the table of p&tars of variation to add a colur

www.manharaa.com

53

for constraints, especially noting dependencies among parametees @lumn for the
mappings to modules. The two variabilities in our product line name adHcruise are
independent of each other and hence do not have any constraints bedalearther.

Table 5 describes the decision model table.

Variability Name Value Set Constraints | Module Mapping
V1 AAH mode | Present, Absent None Present: 1&2&3
Absent: 1&2
V2 Cruise mode| Present, Absent None Present: 1&2&4
Absent: 1&2

Table5: Decision Tablefor SAFER

Step 6- Dependency graph: After applying these five steps, to make consistent decisions

regarding each new productthe variabilities and constraints are modeled in the form of
a dependency graph. Each variability is a node in the graph with atgrepeincluding

its name, description, and valid parameter values. The nodes haente of edges:
outgoing edges and incoming edges, corresponding to constraints.oDeuo@king is
done by using different graph-walking algorithms to traverse thwrahg graph such as
failure-first optimization (FFO) or Least Options Optimipati(LOO) [43]. Depending

on the order in which the vaiabilities are selected, the gralplibevaccordingly pruned

according to the constraints.

www.manaraa.com

54

In the product line that we developed, the two variabilities, naaH and CC,
are independent of each other since each handles a sepanate. feae AAH handles
the rotation feature of the device whereas CC handles the tiramslaeature of the
device. Hence there are no constraints between these varigbilite dependency graph
consists of 2 disconnected nodes without any edges between thermelms that the

sequence in which the variabilities are selected does not affect the firal res

These 6 steps lead us to the development of the SAFER product line.

4.2 Results of FormulaEditor on SAFER product line

The Appendix shows the model files for the four products in the SAF&®RIpK
line. This section explains the process of applying FormulaEudittre four products in

the product line and explains the utility of the FormulaEditor by evaluating thiéstes

Modeling Products of SAFER product line:

The appendix contains the model file for the original SAFER prgohastided by
Ben Di Vito [2]. This is followed by the model files for the fqumoducts in the SAFER
product line. We give a brief description of these four models beéi@aeh of the four
products are modeled to provide six-degrees-of-freedom, prioritizedlation, and
priority to rotation over translation. The Commonalities and vartaslare then verified

with the four models.

Base SAFERThe model file for Base SAFER models the simple six-degidredom
capability of SAFER. Since we require single translationatlacation to be active at a
time, we introduce three variables for the effective accederalong each translational

axis. The idea of effective acceleration can be explained lasvéolin the presence of a

www.manaraa.com

55

positive X acceleration and a negative Y acceleration, the comryo@alirequires that
X be given priority over Y. Thus the effective acceleration alraxis must be positive
but the Y acceleration must be suppressed. Hence the effectigee¥ration must be

Zero.

Base SAFER Cruise:Base SAFER Cruisenhances the features of Base SAFER by

adding the Cruise Control capability to it. The modulganCommand and
cruiseTransitionare modeled to allow the feature of Cruise Control. To ensurevtiie
in cruise mode, the translational accelerations are maintaihesk variables were
introduced to retain the previous accelerations in the X, Y and Z akesretained

accelerations are equal to the effective accelerations in previous state

AAH SAFER:AAH model is a modified version of the originGAFERmodel which
introduces translational accelerations to the earlier versiontrdh€ommand module is
introduced to incorporate this features of six-degrees-of-freedoaritized translation,

and priority to rotation over translation.

AAH SAFER CruiseAAH SAFERCruise combines the features of AAH and Cruise.

Essentially, the model foAAH SAFERCruise is a grouping of the models fAAH
SAFERand Base SAFER CruiseThe commonalities, C1, C2, and C3 as well as the

variations of cruise mode and AAH are joined together in the model.

Verification of Commonalities: The commonality requirements C2 and C3 are to be

satisfied by each product in the product line. C2 states thataiindation commands are
prioritized so that only one translational axis receives a@eerat a time, with the

priority order being X, Y and then Z. C3 states that if both tetiosl and rotation

www.manaraa.com

56

commands are present simultaneously, rotation takes priority andati@ms will be

suppressed.

Verification of common properties over all the products in the produoet fequires
specification of these properties for each product. However, the aippiic of
FormulaEditor to our proposed SAFER product line models eliminatectireeveork of
re-specification of the properties. The use of property pafibera commonality enabled
reuse of this pattern throughout all the four models thereby redingrgpecification and

verification time.

We explain the verification of C2 and C3 using pattern files below.

Base-SAFERUSsing the model file for Base-SAFER shown in Appendix, we conducte
verification of the commonalities for this model. The commonalityifieation is

explained below.

C2: Commonality C2 ensures prioritized acceleration along theslatonal axes,
allowing only one axis at a time, with the priority being Ken Y and then Z. We

verified the following property on the model.

(AG((((tranGrip.noRotCmd) & (tranGrip.XAcc = NEG)) & (tranGrip.YAcc =P0OS))
-> ((tranGrip.XAccEffect = NEG) & (tranGrip.YAccEffect = ZERO))))

C2 is specific to priority among translational axes. Hence, wéy\vhis property
when there is no rotational acceleration since the presence tbmataacceleration
would suppress any translational acceleration. The property chetka the absence of
rotational acceleration, a negative acceleration along X axisagpositive acceleration

along Y axis, priority is given to the X axis. Hence the éffecX axis acceleration is

www.manaraa.com

57

negative and the effective Y acceleration is suppressed to zernalive this property as

no_rot_X_priority Y

We used the same steps outlined in the previous chapter to cregi®pley
pattern i.e. 1) Use common patterns to generate un-instantiatedtigoR¢ Instantiate
required parameters with atoms 3) Move the partially instadt@ateperty to the ‘moved
properties’ section using the MOVE button, and 4) Save the moved fyragea pattern
in a new or existing pattern file. After specifying the prp&o_rot_X_ priority Y it
was saved as a pattern by using the move button. The pattesavessin a file named
commonality _priority _patterndn the model panel, we then added the path to this pattern
file so that the pattern is available for reuse. We verifigdlai properties for the other
axes by re-using this property pattern and reinitializingettisting atoms with the atoms

for the appropriate axes.

C3: Commonality C3 ensures that rotation takes priority over traoslatiVe first

verified the following property.

(A G (((rotGrip.roll = POS) & ((tranGrip.XAcc = POS)|((tranGrip.YAcc = POS)|(tranGrip.ZAcc =
POS)))) -> ((tranGrip.XAccEffect = ZERO)&((tranGrip.YAccEffect = ZERO)&(tranGrip.ZAccEffect =
ZERO)))))

The property checks that in the presence of a rotational adamierany
translational acceleration will be suppressed as rotation hastyprover all the
translations. This property is namedras pos_priority_all_tran We saved this in the
same pattern fileommonality_priority patternsThe reason for saving both patterns for
C2 and C3 in the same file was for the convenience of the usitrtigese patterns were

related to commonalities. Hence by specifying tusimonality _priority _patternas the

www.manaraa.com

58

common pattern file in the model panel, the patterns could be rdosezhecking
whether the commonalities hold for the other products. Separate pldgsrfor each
commonality could also be created. However this would require algatige common

pattern file in the model panel to check each commonality.

For any model for another product with the same naming schemeedsbys
Base-SAFERthe above described patterns can be reused. The patterns wilplogedls
in the list of the available patterns along with other common buigiatterns. In the
model panel, the pattern filkommonality priority patternsvas selected and used to
specify the commonalities in each of the other three products. Uikeilis explained

below.

Base-SAFER-CruiseThe introductions of the cruise mode in Base-SAFER-Cruise

required that the commonalities by checked when the cruise madsabled and when it
is enabled. The patterns created while verifying this properBase-SAFER were re-
used to specify these propertiesBase-SAFER-Cruis@ he patterns were reinstantiated

by adding the variable which checks that the Cruise mode is disabled or enabled.

C2: The properties to verify C2 are as follows.

Cruisedisabled:

(AG(((((tranGrip.noRotCmd) & (cruiseState.engage = cruiseOff))& (tranGrip.XAcc = NEG))
& (tranGrip.YAcc =P0OS)) ->((tranGrip.XAccEffect = NEG) & (tranGrip.YAccEffect =ZERO))))

Cruise enabled:

(AG(((((tranGrip.noRotCmd) & (cruiseState.engage = cruiseOn)) & (tranGrip.XAcc = NEG))
& (tranGrip.YAcc =P0OS)) -> ((tranGrip.XAccEffect = NEG) & (tranGrip.YAccEffect =ZERO))))

www.manaraa.com

59

The pattern created for this property in Base-SAFER elimin#te need to
specify entire properties again. We reinitialized the fitetraranGrip.noRotCmd) to
include another atom which checks the cruise state. We added theraddtbndition
namedcruiseState.engage = cruiseOff andcruiseState.engage = cruiseOn to the property

in Base-SAFER which checks that when the cruise control is inactive, Cxfgedati

C3: Similarly for C3, we reused the pattern created in BadeER for C3 and
reinitialized the first atomrétGrip.roll = POS) to include the atonaruiseState.engage =
cruiseOff and cruiseState.engage = cruiseOn in addition to rotGrip.roll = POS. The

properties for C3 which we verified were

Cruisedisabled:

(A G (((rotGrip.roll = POS) & (cruiseState.engage = cruiseOff)) & ((tranGrip.XAcc
POS)|((tranGrip.YAcc = POS)|(tranGrip.ZAcc = PQS)))) -> ((tranGrip.XAccEffect
ZERO)&((tranGrip.YAccEffect = ZERO)&(tranGrip.ZAccEffect = ZERQ)))))

Cruise enabled:

(A G (((rotGrip.roll = POS) & (cruiseState.engage = cruiseOn)) & ((tranGrip.XAcc
POS)|((tranGrip.YAcc = POS)|(tranGrip.ZAcc = POS)))) -> ((tranGrip.XAccEffect
ZERO)&((tranGrip.YAccEffect = ZERO)&(tranGrip.ZAccEffect = ZERQ)))))

The use of the previously created patterns reduced the propefigatien time as it

eliminated the re-specification of the similar properties.

AAH-SAFER The patterns created in Base-SAFER were reused her¢oalerify the
commonalities. The properties below differ from those in Base-&Aély in a single
atom. In this case, the property differed in the state for AA$in Base-SAFER-Cruise,

here we introduced the condition®\AHState.toggle.engage = AAHOff and

www.manaraa.com

60

AAHState.toggle.engage = AAHONn in AAH-SAFER to take into account that the property

is satisfied when AAH is switched off and when it is active.

The properties for C2 and C3 are shown below.

C2:

Cruisedisabled:

(AG(((((tranGrip.noRotCmd) & (AAHState.toggle.engage = AAHOff)) & (tranGrip.XAcc = NEG))
& (tranGrip.YAcc =P0OS)) ->((tranGrip.XAccEffect = NEG) & (tranGrip.YAccEffect = ZERO))))

Cruise enabled:

(AG(((((tranGrip.noRotCmd) & (AAHState.toggle.engage = AAHON)) & (tranGrip.XAcc = NEG))
& (tranGrip.YAcc = P0OS)) -> ((tranGrip.XAccEffect = NEG) & (tranGrip.YAccEffect = ZERO)))

C3:
Cruisedisabled:

(AG (((rotGrip.roll = POS) & (AAHState.toggle.engage = AAHOff)) & ((tranGrip.XAcc = PQOS)|
((tranGrip.YAcc = POS)|(tranGrip.ZAcc = PQS)))) -> ((tranGrip.XAccEffect =
ZERO)&((tranGrip.YAccEffect = ZERO)&(tranGrip.ZAccEffect = ZERQ)))))

Cruise enabled:

(AG (((rotGrip.roll = POS) & (AAHState.toggle.engage = AAHON)) & ((tranGrip.XAcc = POS)|
((tranGrip.YAcc = POS)|(tranGrip.ZAcc = PQOS)))) -> ((tranGrip.XAccEffect =
ZERO)&((tranGrip.YAccEffect = ZERO)&(tranGrip.ZAccEffect = ZERO)))))

AAH-SAFER-CruiseFor AAH-SAFER-Cruise, two conditions had to be added to the

existing pattern from Base-SAFER: one for AAH mode and the dinecruise mode.
The properties below show the two additions that were made. Tureetisat the
properties are satisfied when both cruise control and AAH areeaatid disabled, four

properties had to be verified. Two atoms were added in each of dperties, one

www.manaraa.com

61

corresponding to the Cruise mode and the other corresponding to the Adél ithe

properties are given as follows.

C2:

AAH and Cruise disabled

(AG((((((cruiseState.effectCruiseState = cruiseOff) & (AAHState.toggle.effectAAHState =
AAHOff))
& (tranGrip.noRotCmd)) & (tranGrip.XAcc = NEG)) & (tranGrip.YAcc = POS))

-> ((tranGrip.XAccEffect = NEG) & (tranGrip.YAccEffect = ZERO))))

AAH disabled and Cruise enabled:

(AG((((((cruiseState.effectCruiseState = cruiseOn) & (AAHState.toggle.effectAAHState =
AAHOff))
& (tranGrip.noRotCmd)) & (tranGrip.XAcc = NEG)) & (tranGrip.YAcc = POS))

-> ((tranGrip.XAccEffect = NEG) & (tranGrip.YAccEffect = ZERO))))

AAH enabled and Cruisedisabled:

(AG((((((cruiseState.effectCruiseState = cruiseOff) & (AAHState.toggle.effectAAHState =
AAHON))
& (tranGrip.noRotCmd)) & (tranGrip.XAcc = NEG)) & (tranGrip.YAcc = POS))

-> ((tranGrip.XAccEffect = NEG) & (tranGrip.YAccEffect = ZERO))))

AAH and Cruise enabled:

(AG((((((cruiseState.effectCruiseState = cruiseOn) & (AAHState.toggle.effectAAHState =
AAHON))
& (tranGrip.noRotCmd)) & (tranGrip.XAcc = NEG)) & (tranGrip.YAcc = POS))

-> ((tranGrip.XAccEffect = NEG) & (tranGrip.YAccEffect = ZERO))))

C3:

AAH and Cruisedisabled:

(A G (((cruiseState.effectCruiseState = cruiseOff) & (AAHState.toggle.effectAAHState = AAHOff
)& (rotGrip.roll = POS) & ((tranGrip.XAcc = POS) | ((tranGrip.YAcc = POS) | (tranGrip.ZAcc = PQOS))))
-> ((tranGrip.XAccEffect = ZERO)&((tranGrip.YAccEffect = ZERO)&(tranGrip.ZAccEffect = ZERO)))))

www.manaraa.com

62

AAH enabled and Cruisedisabled:

(A G (((cruiseState.effectCruiseState = cruiseOff) & (AAHState.toggle.effectAAHState = AAHON
)& (rotGrip.roll = POS) & ((tranGrip.XAcc = POS) | ((tranGrip.YAcc = POS) | (tranGrip.ZAcc = PQOS))))
-> ((tranGrip.XAccEffect = ZERO)&((tranGrip.YAccEffect = ZERO)&(tranGrip.ZAccEffect = ZERO)))))

AAH disabled and Cruise enabled:

(A G (((cruiseState.effectCruiseState = cruiseOn) & (AAHState.toggle.effectAAHState = AAHOff
)& (rotGrip.roll = POS) & ((tranGrip.XAcc = POS)|((tranGrip.YAcc = POS) | (tranGrip.ZAcc = PQS))))
-> ((tranGrip.XAccEffect = ZERO)&((tranGrip.YAccEffect = ZERO)&(tranGrip.ZAccEffect = ZERO)))))

AAH and Cruise enabled:

(AG(((cruiseState.effectCruiseState = cruiseOn) & (AAHState.toggle.effectAAHState = AAHON)
& (rotGrip.roll = POS) & ((tranGrip.XAcc = POS) | ((tranGrip.YAcc = POS)|(tranGrip.ZAcc = PQS))))
-> ((tranGrip.XAccEffect = ZERO)&((tranGrip.YAccEffect = ZERO)&(tranGrip.ZAccEffect = ZERO)))))

Verification of Variabilitiess Properties pertaining only to AAH are requirements on

some but not all the products. Since the AAH feature is presAtHhSAFERandAAH-
SAFER-Cruisgthese properties need to be verified only on these products. Sintharl
properties specific to the Cruise mode need to be verified onBase-SAFER-Cruise
andAAH-SAFER-CruiseThe need to verify similar properties on more than one product

encouraged us to use property patterns to verify these variabilities.

. Properties pertaining to cruise variabilityf-or example, one of the properties

pertaining to cruise mode states that acceleration along athg dfanslational axes (X,

Y, or Z) while the cruise mode is active, deactivates the crasge. We named this

www.manaraa.com

63

property Cruise_on_to_offThe verification of this property in Base-SAFER-Cruise and
AAH-SAFER-Cruise is shown below.

v Base-SAFER-Cruise The property specification in CMU-SMV for

Cruise_on_to_offwas written as

(AG (((cruiseState.engage = cruiseOn) & (!tranGrip.noTranCmd))
-> (AX (cruiseState.engage = cruiseOff))))

This property was saved as a pattern in a file nacnéde_variabilities_patterrior reuse

in AAH-SAFER-Cruise

v AAH-SAFER-Cruise AAH-SAFER-Cruise was modeled with the motive of

separating the implementation of AAH mode and Cruise mode. Assut, rehe
verification of the properties related to only AAH mode or Crumle did not require
addition of any constraints to them. The pattern create€ifoise_on_to_ofin Base-
SAFER-Cruise was reused without any reinstantiation or moddicaFor reusing the
pattern, we added the path to the patterndilése_variabilities_patternn the model
panel.

Similarly, another property pertaining to the cruise mode whichviariation of
Cruise_on_to_ofttates that, if the cruise state is active, then it contirmée tin the
active state in the absence of a translational command. To tresfgroperty, we reused
the pattern created forCruise_on_to off and re-instantiated two atoms
('tranGrip.noTranCmd andcruiseState.engage = cruiseOff). The property remained the same

for AAH-SAFER and AAH-SAFER-Cruise and the property is as follows.

(AG(((cruiseState.engage = cruiseOn)&(tranGrip.noTranCmd))
->(A X(cruiseState.engage = cruiseOn))))

www.manaraa.com

64

Properties pertaining to AAH variabilityFhe AAH feature for the SAFER product line

was modeled exactly as it was done in the original SAFER npdelded by Ben Di
Vito. By following the same nomenclature of the original SARBE&del for the SAFER
product line, the patterns that we created for the original SARtERel during its
evaluation were entirely used without any modification for vetifica of the AAH
properties in AAH-SAFER and AAH-SAFER-Cruise. This signifitg reduced the
verification time as no new patterns nor properties had to be ispetor the AAH

features.

Analyses of SAFER Product line Verification Results- We evaluate the results of using

FormulaEditor based on two aspects: reuse and change.

1. Reuse: The evaluation of the reusability aspect of FormulaEditor aseaipia our
proposed SAFER product line demonstrates the ease of specificatioerdiwdtion of
properties due to reuse of property patterns. With a standard noraenédaitthe product
line models, property patterns created for property verificafioonie product could be
reused for other products in the product line. As compared to promgifigation in the
absence of FormulaEditor, FormulaEditor reduced the time and efémtled for
specification of properties in product lines. The simple product line we propugedad
only four products with two variabilities. Adding variabilities woulkely increase the
number of properties to be verified. In such situations, the usefulnéssratilaEditor
would be experienced to a greater extent.

2. Change: A change in a product line can result from evolution of propertiéseof
existing products in the product line or from evolution of the products themselves.

Property Evolution

www.manaraa.com

65

Property evolution in product line involves:

> Addition of new properties to the product tinith time, new requirements may
be identified for the product line. In product lines, such new regemé&srare many times
very similar to the existing requirements of the product linep&nty specification for
these new requirements can utilize the features of propergrmmtind dynamic atom
selection described in Chapter 3 to maximize reusability.efatiditional requirements
are similar to existing requirements, the property patterngXisting properties can be
reused for specification of new properties. The existing propatiemps can also be
composed to form new patterns. The feature of dynamic atomiselatiows efficient
initialization of these patterns. Property patterns also allewvcreation of patterns for
these new requirements for a single product in the product litrereuse for the other
products in the product line.

> Deletion of existing properties from the product livéith the passage of time,
existing properties in the product line may become obsolete andhanay to be
discarded. Such a situation can occur for different reasons. One reason is ficaoodi
of the requirements of a particular product in the product line. ke, iinit is decided that
a particular feature is not required for a product in the produet the model for that
product can be changed and some of the earlier properties may becooheteobs
FormulaEditor allows easy deletion of properties which do not have-efiects.
Obsolete properties which do not have dependencies, or in other wordsyhhcselo
not have any other properties depending on them, can be deleted frpnodhet line.
As FormulaEditor maps the properties to their underlying requiramealetion of such

properties is facilitated. However, deletion of such propertieshirentire product line

www.manaraa.com

66

would require manually removing the property from each of the propates in the
product line. This process can become labor-intensive in a large product line context.
> Transformation of commonality to variabilityt is common that with time, a
commonality is transformed into a variability. As the product lew®lves, certain
requirements which were common to all the products previously may nerltega
commonality for the future products. Such requirements may becanabiities for the
new products. In such situations, the existence of property pattethges the
complexity of the transformation of commonality to variabilitWe described in the
previous sections that the efficient method of verification of comitm®sais to use
property patterns. In case of the new products where these prevaoastyon properties
now become variabilities, the existing property patterns forpleviously common
properties can be reused to specify variabilities for the nedupts. The only factor that
needs to be taken into consideration is the dependence of these commotieproper
other properties. If the previously common properties depend on other @eptren
there can be two options to verify the variability for the neadpct. The first method is
to verify both the properties and model them as variabilities. Tt@ndemethod is to
create a new pattern for the new variability by composing tleotd properties into a
single property. In either of the cases, FormulaEditor allowsiefi method for property
specification by providing the features of property patterns and dynamic electian.

> Transformation of variability to commonalityAs the product line evolves, a
requirement which is a variability for the existing products nayome a commonality
for future products in the product line. In such situations, the requiremeeqds to be

verified for each of the new products in the product line. If theabgity was present in

www.manaraa.com

67

many products, then we described in the previous chapters how Fodimailagan

reduce the specification and verification time by the use of gyopatterns and pattern
files. These property patterns can be reused for verifyingdhenonality for the new
products. If the variability was present in only a single prododtrasulted in very few,
say one or two properties then we can understand that the prppégyns would not
result in reduced verification times. However, the use of propetterns to create the
commonality and its reuse for the future products will reducesgiexification and

verification time in the future.

Product Evolution

A product line can also change either by the addition of a new proalube
product line or by deleting/removing a product from the product Muglification of the
requirements of an existing product in the product line can be considsrdte
combination of removal of a product followed by the addition of a new produbie
product line.

Addition of a product: Addition of a new product to the product line involves

introduction of new variabilities to the product line or the use of coatiain of existing
variabilities. Property patterns could be created for the vatiabilihat are predicted to
be satisfied by other products in the product line. Our practigerence during the
verification of SAFER product line demonstrated the use of pattdims. SAFER
product line was initially designed to have three products narBee-SAFER, Base-
SAFER-Cruise and AAH-SAFER. The addition of AAH-SAFER-Cruisdhe product-

line involved the verification of properties related to both AAH maadg @ruise mode.

www.manaraa.com

68

The pattern files created for these properties were dirastg to verify the properties
without any additional specification effort being required.

Deletion of a productRemoving a product from a product line may result in the removal

of certain variabilities which are only specific to this prodécrmulaEditor separately
verifies each of the products in the product line and at the samaaeuses the patterns
to reduce overhead. Due to this separation of verification, the remosgbroduct from
the product line does not affect the other products as the variabiitéiser products are
verified using separate patterns. When a product is removed, jugpattern file
associated with the variabilities in this product needs to be remdwes separation of
verification and use of pattern files eases the task of trgdki@ variabilities for each
product. For example, if we remove the cruise feature from the priaeethich results
in the removal of Base-SAFER-Cruise and AAH-SAFER-Cruise ftoenproduct line,
only the pattern file associated with the properties for Crmiede needs to be deleted

and the other products will continue to function as before.

www.manaraa.com

69

CHAPTER 5. CONCLUSION AND FUTURE WORK

This work describes improvements to FormulaEditor, a tool-supporteditgie
that facilitates the reuse of property specifications for moldetking the members of a
software product line. Reuse of property specifications avoids theheackr for
specification of properties for every member of the product lihe.grevious version of
the tool mapped the properties to 1) the underlying product line rewgnts, 2) the
Cadence SMV models for the products, and 3) the verification re$Sukstool enables
reuse of shared product line properties, as well as of product lindisgmtterns of
properties, while carefully preserving any distinctions amongptbduct line members.
It also manages the changes and re-verification needed as the product ires.evol

This work extends the previous version of the tool to allow venéinabf the
members of the product line that are modeled in CMU-SMV in additboCadence-
SMV. The work supports formal verification of product lines fayaley systems written
in the CMU-SMV language. The improvements are tested on a proposed tpinduc
based on the original SAFER case study. Possible variatiotisef@AFER product line
are suggested and the advantages of the improved FormulaEditorstack de this
product line.

Future work can include the extension of the tool to support additioodélm
checkers such as the more recent NuSMV or SPIN. Also, the techtagube made
more flexible by: 1) making the atom-extraction rules easienodify so that users can
change them at the time of specification; 2) investigatingnaatic instantiation of
property patterns; 3) allowing properties specified elsewhebe tmanaged more easily

by extending the property reuse management capability to alkan ¢hterfaces with

www.manaraa.com

70

other tools; and 4) allowing automatic generation of partially linéd patterns from

given set of properties.

www.manharaa.com

71

BIBLIOGRAPHY

[1]. Atkinson, C. et. al. Component-Based Product line Engineering with WAddison-
Wesley, 2002.

[2]. Ben L. Di Vito. High-automation proofs for properties of requirements models.
Software Tools for Technology Transf8eptember 2000.

[3]. Bennet, K., Legacy System&EE SoftwareJan 1995, 19-73.

[4]. Blazy, S., Gervais, F., Laleau, R. Reuse of Specification Patterns with tieehB®dviIn
Proc. of ZB 2003: Formal Specification and Development in Z and B: Third
International Conference of B and Z UseFsirku, Finland, LNCS 2651, Springer
Verlag, 2003, 40-57.

[5]. Bryant, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35, 8, 677-691.

[6]. Burch, J. R, Clarke, E. M., McMillan, K. L., and Dill, D. L. 1990. Sequential circuit
verification using symbolic model checking. In Proceedings of tReD@sign
Automation Conference. IEEE Computer Society Press, Los Alamitos, Qalifd6-

51.

[7]. Burch, J. R., Clarke, E. M., and Long, D. E. 1991. Representing circuits more
efficiently in symbolic model checking. In proceedings of th€ R&sign Automation
Conference. IEEE Computer Society Press, Los Alamitos, California, 403-407.

[8]. Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., Hwang, L. J. Symbolic Model
checking: 16° States and Beyond. Proceedings of the Fifth Annual Symposium on
Logic in Computer Scienc(EEE Computer Society Press, June 1990.

[9]. Cadence SMV, Ken McMillan’s homepage. http://www.kenmcmil.com/smv.html

[10]. Cadence SMV. http://www.ita.cs.ru.nl/publications/papers/biniam/smv/

[11]. Childs, A. et. Al. CALM and Cadena: Metamodeling for Component-Based Product
line DevelopmentlEEE Computer, 32 (FEB. 2006), 42-50.

[12]. Clarke, E. M., and Emerson, E.A. 1981. Synthesis of synchronization skeletons for
branching time temporal logic. In Logic of Programs: Workshop, New York. Sgring
Verlag, New York.

[13]. Clarke, E.M, Grumberg, O., and Peled DModel checkingThe MIT Press, 2000.

www.manaraa.com

72

[14]. Clarke, E.M., Emerson, E.A., and Sistla, A. P. 1983. Automatic verification of finite
state concurrent systems using temporal logic specifications. In Bingeef 10"

Annual ACM Symposium on Principles of Programming Languages (Austin, Tx. Jan)
ACM, New York, 117-126.

[15]. Clarke, E.M., Emerson, E.A., and Sistla, A. P. 1986. Automatic verification of finite
state concurrent systems using temporal logic specifications. ACM. Reoggram.
Lang. Syst. 8, 2 (April), 244-263.

[16]. Cleaveland, R. 1990. Tableau-based model checking in propositional mucalculus. Acta
Inf. 27, 8 (Sept), 725-747.

[17]. Clements, P., and Northrop, L. Software Product lines. Boston: Addison-Wesley,
2002.

[18]. Doerr, B., and Sharp, D. 2000. Freeing Product line Architectures from Execution
Dependencies. P. Donohoe ed., Proceedings Software Product line Conference, Kluwer
Academic Publishers.

[19]. Dwyer, M.B., Avrunin, G. S., and Corbett, J.C. Patterns of property specifications for
finite-state verification. IfProc. of ICSE'99LA, USA, May 16-22, 1999). ACM Press,
1999, 411-420.

[20]. Extra Vehicular Activity. http://msis.jsc.nasa.gov/sections/section14.htm

[21]. Farkash, et.al. Reuse-aware Property Specification. Property-Baseth®ssign
(PROSYD) deliverable 1. 1/2.

[22]. Formal methods specification and analysis guidebook for the verification ofseftw
and computer systems, Appendix C.

[23]. Gomaa, H. Designing Software Product lines with UML: From Oases to Pattern-
Based Software Architectures. Addison-Wesley, 2005.

[24]. Havelund, K., Lowry, M., and Penix, J. Formal Analysis of a Spacd-Cttroller
using SPINIEEE Trans. on Software Engineering, 87(Aug. 2001), 749-765.

[25]. Heie, A. 2002. Global Software Product lines and Infinite Diversity.
http://www.sei.cmu.edu/SPLC2/keynote_slides/keynote _1.htm

[26]. Holzmann, G.J., The Spin Model checK&EE Trans. on Software Engineering, 23,
1997, 279-295.

www.manaraa.com

[27].

[28].

[29].

[30].

[31].

[32].

[33].

[34].

[35].

[36].

[37].

73

Huth, M., and Ryan, MLogic in Computer Science: Modeling and reasoning about
systems2™ ed., Cambridge University Press, 2004. [Online]. Available:
http://pubs.doc.ic.ac.uk/logic-computer-science-second/

Kaivola, R. Formal Verification of Pentium Pentium® 4 Componenth Bigmbolic
Simulation and Inductive Invariants. Rroc. of CAV 200%Edinburgh, UK, July 6-10,
2005). Springer 2005, 170-184.

Li, H., Krishnamurthi, S., and Fisler, K. Modular Verification of Open Features Using
Three-Valued Model checkingutomated SW Eng., 12,(July 2005), 349-382.
Lichtenstein, O., and Pnueli, A. 1985. Checking that finite state concurrent programs
satisfy their linear specification. In Proceedings of tHe A@nual ACM Symposium

on Principles of Programming Languages (New Orleans, LA. Jan). ACM, New York,
97-107.

Liu, J., Dehlinger, J., and Lutz, R. R. Safety Analysis of Soft#aceluct lines Using
State-Based Modelingournal of Systems and Softw&®(11):1879 - 1892, 2007.

Liu, J., Hauptman, M., Lutz, R. R, Geppert, B., RoRler, F., and Weiq20B87). A
Tool-supported Technique for Specification & Management of Model ahgck
Properties for Software Product lind®chnical Repor08-05, Computer Science, lowa
State University.

McMillan, K. L. Symbolic model checking- an approach to the state explosion
problem. PhD thesis, SCS, Carnegie Mellon University, 1992.

Model Checking Group at CMU. The SMV System.
http://www.cs.cmu.edu/~modelcheck/smv.html

Pohl, K., Bockle, G., van der Linden, F. J. Software Product line Engineering:
Foundations, Principles and Techniques. Springer, 2005.

Quielle, J., and Sifakis, J. 1981. Specification and verification of concurreninsyiste
CESAR. In Proceedings of th& fternational Symposium in Programming.

Robby, Dywer, M.B., and Hatcliff, J. Bogor: A Flexible Framework for Gnegat
Software Model Checkers. Proc. Of Testing: Academia & Industry Conf. — Practice
And Research Techniques (TAIC PARV)ndsor, United Kingdom, Aug. 29-31,

2006), 3-22.

www.manaraa.com

[38].

[39].

[40].

[41].

[42].

[43].

[44].

74

Schmid, K. and Verlage, M. 2002. The Economic Impact of Product line Adoption and
Evolution. IEEE Software, 19(4): 50-57.

Sistla, A. P., and Clarke, E. 1986. Complexity of Propositional temporal logics. J. AC<
32, 3 (July), 733-749.

T. Kishi and N. Noda. Formal verification and software product li@esnmunication

of the ACM49(12): 73-77, Dec. 2006.

Toft, P., Coleman, D. and Ohta, J. 2000. A Cooperative Model for Cross-Divisional
Product Development for a Software Product line. P. Donohoe ed., Proceedings
Software Product line Conference, Kluwer Academic Publishers.

Weiss, D.M, and Lai, C. T. R. Software Product line Engineering: A FeBaibed
Software Development Process. Addison-Wesley,1999.

Weiss, Li, Slye, Sun. Decision-Model-Based Code Generation for SPLE, Irdaatat
Software Product line Conference, 2008.

Wijinstra, J. 2002, Critical Factors for a Successful Platform-Based Rriédonly
Approach. G. Chastek ed., Proceedings Software Product line Engineering Gafere
Springer LNCS 2379.

www.manaraa.com

75

APPENDIX

The appendix contains the following supplemental material:

=

CMU-SMV model for the original SAFER product

2. Property Set for the original SAFER product

3. CMU-SMV model for Base-SAFER

4. CMU-SMV model for Base-SAFER-Cruise

5. CMU-SMV model for AAH-SAFER

6. CMU-SMV model for AAH-SAFER-Cruise

CMU-SMV Model for the original SAFER product

This is the CMU-SMV model for the original SAFER product provided by Ben Di Vito

[2]

MODULE main
VAR
switches : HCMSwitches;
rotGrip :rotCommand;
AAHState : AAHTransition(switches, rotGrip);
allAxesOff : boolean;
ASSIGN
allAxesOff := AAHState.toggle.allAxesOff;
DEFINE
maxTicks := AAHState.maxTicks;

MODULE buttonState(switches, active, timeout)
VAR

engage: {AAHOff, AAHStarted, AAHOn,

pressedOnce, AAHClosing, pressedTwice};

ASSIGN

init(engage) := AAHOff;

next(engage) := case

switches.AAH = buttonDown: downTransition;

www.manaraa.com

76

switches.AAH = buttonUp: upTransition;
esac;
DEFINE
downTransition :=
case engage = AAHOff: ~ AAHStarted;
engage = AAHStarted: AAHStarted;
engage = AAHOnN: pressedOnce;
engage = pressedOnce: pressedOnce;
engage = AAHClosing: pressedTwice;
engage = pressedTwice: pressedTwice;
esac;

upTransition :=
case engage = AAHOff: AAHOff;
engage = AAHStarted: AAHOn;
engage = AAHOnN: stateA;
engage = pressedOnce: stateB;
engage = AAHClosing: stateB;
engage = pressedTwice: AAHOff;
esac;

stateA := case allAxesOff: AAHOff; 1: AAHOn; esac;
stateB := case timeout <= 0: AAHOn;
1 AAHClosing;
esac;

allAxesOff := I(active.roll | active.pitch | active.yaw);

MODULE AAHTransition(switches, rotCmd)
VAR

activeAxes: rotPredicate;

ignoreHCM: rotPredicate;

toggle: buttonState(switches, activeAxes, timeout);

timeout: 0..100;
ASSIGN
init(timeout) := 0;
next(activeAxes.roll) := starting |
(Y(next(toggle.engage) = AAHOff) &
activeAxes.roll &

(rotCmd.roll = ZERO | ignoreHCM.roll));

next(activeAxes.pitch) := starting |
(Y(next(toggle.engage) = AAHOff) &
activeAxes.pitch &

(rotCmd.pitch = ZERO | ignoreHCM.pitch));

next(activeAxes.yaw) := starting |
(Y(next(toggle.engage) = AAHOff) &
activeAxes.yaw &

www.manaraa.com

77

(rotCmd.yaw = ZERO | ignoreHCM.yaw));

next(ignoreHCM.roll) :=

case starting: !(rotCmd.roll = ZERO); 1: ignoreHCM.roll; esac;
next(ignoreHCM.pitch) :=

case starting: !(rotCmd.pitch = ZERO); 1: ignoreHCM.pitch; esac;
next(ignoreHCM.yaw) :=

case starting: !(rotCmd.yaw = ZERO); 1:ignoreHCM.yaw; esac;

next(timeout) :=
case toggle.engage = AAHON &
next(toggle.engage) = pressedOnce : maxTicks;
timeout >0 :timeout - 1;
1 :0;
esac;
DEFINE
maxTicks := 100;

starting := toggle.engage = AAHOff & next(toggle.engage) = AAHStarted;

MODULE HCMSwitches
VAR
MODE: {ROT, TRAN};
AAH: {buttonUp, buttonDown};

MODULE rotCommand
VAR
roll: {NEG, ZERO, POS};
pitch: {NEG, ZERO, POS};
yaw: {NEG, ZERO, POS};

MODULE rotPredicate
VAR

roll: boolean;

pitch: boolean;

yaw: boolean;

ASSIGN
init(roll) :=0;
init(pitch) := 0;
init(yaw) :=0;

www.manharaa.com

P1:

P2:

P3:

P4:

P5:

P6:

P7:

78

Property set for Original SAFER model

This is the CTL property set for the original SAFER model provided by Ben Di2jito

DEFINE
AAH_stays_off :=

AG (AAH_state.toggle.engage = AAH_off &

switches.AAH = button_up ->

AX AAH_state.toggle.engage = AAH_off);

DEFINE
AAH_stays_on :=
AG (! all_axes_off &
AAH_state.toggle.engage = AAH _on &
switches.AAH = button_up

->

AX AAH_state.toggle.engage = AAH_on);

DEFINE
pressed_down :=
AG (AAH_state.toggle.engage = AAH_starte
switches.AAH = button_down

AX AAH_state.toggle.engage = AAH_started);

DEFINE
starting_axes_on :=

AG (AAH_state.toggle.engage = AAH_off &

d&
->

(AX AAH_state.toggle.engage = AAH_started) ->

AX (AAH_state.active_axes.roll & AAH_state.active_axes.pitch

& AAH_state.active_axes.yaw));

DEFINE
not_axes_off :=

AG (AAH_state.toggle.engage = AAH_on &
(AX AAH_state.toggle.engage = AAH_on)

I all_axes_off);

DEFINE
ignore_starting :=

AG (! (AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started)) &

AAH_state.ignore_HCM.roll
AX AAH_state.ignore_ HCM.roll);

DEFINE
timeout_pressed_once :=
AG (AAH_state.toggle.engage = AAH_on &

->

www.manaraa.com

P8:

P9:

P10:

P11:

P12:

P13:

P14:

P15:

79

(AX AAH_state.toggle.engage = pressed_once) ->
AX AAH_state.timeout = max_ticks);

DEFINE
timeout_return :=
AG ((AAH_state.toggle.engage = pressed_once |
AAH_state.toggle.engage = AAH_closing) &
AX AAH_state.toggle.engage = AAH_on ->
AAH_state.timeout <= 1);

DEFINE
on_to_off_direct :=
AG (AAH_state.toggle.engage = AAH_on &
(AX AAH_state.toggle.engage = AAH_off) ->
all_axes_off);

DEFINE
axes_off AAH := AG (AAH_state.toggle.engage = AAH_off -> all_axes_off);

DEFINE
closing_before_timeout :=

AG (AAH_state.toggle.engage = AAH_closing -> AAH_state.timeout > 0);

DEFINE
inactive_during_off :=
AG (1 -> ! E[AAH_state.toggle.engage = AAH_off U
lall_axes_off & AAH_state.toggle.engage = AAH_off]);

DEFINE
rot_axis_stays_off roll :=
AG (AAH_state.toggle.engage = AAH_on & !AAH_state.active_axes.roll
-> | E [IAAH_state.toggle.engage = AAH_started U
AAH_state.active_axes.roll &
IAAH_state.toggle.engage = AAH_started]);

DEFINE
ignore_ HCM_stays_on_roll :=
AG (AAH_state.toggle.engage = AAH_started &
AAH_state.ignore_HCM.roll
-> | E [AAH_state.toggle.engage = AAH_off U
IAAH_state.ignore_ HCM.roll &
IAAH_state.toggle.engage = AAH_off]);

DEFINE
ignore_ HCM_stays_off_roll :=
AG (AAH_state.toggle.engage = AAH_started &
IAAH_state.ignore_HCM.roll
-> | E [IAAH_state.toggle.engage = AAH_off U

www.manaraa.com

P16:

P17:

P18:

P19:

P20:

P21:

P22:

80

AAH_state.ignore_ HCM.roll &
IAAH_state.toggle.engage = AAH_off]);

DEFINE
ignore_stays_active_roll :=
AG (AAH_state.toggle.engage = AAH_started &
AAH_state.active_axes.roll & AAH_state.ignore_HCM.roll
-> | E [IAAH_state.toggle.engage = AAH_off U
I(AAH_state.active_axes.roll & AAH_state.ignore_ HCM.roll) &
IAAH_state.toggle.engage = AAH_off]);

DEFINE
closing_within_timeout :=
AG (1 -> ! E [AAH_state.toggle.engage = AAH_closing U
AAH_state.timeout =0 &
AAH_state.toggle.engage = AAH_closing]);

DEFINE
on_to_off path:=
AG (AAH_state.toggle.engage = AAH_on
-> | E [AAH_state.toggle.engage = AAH_off U
AAH_state.toggle.engage = AAH_started &
IAAH_state.toggle.engage = AAH_off]);

DEFINE
closing_to_on_path :=
AG (AAH_state.toggle.engage = AAH_closing
-> | E [IAAH_state.toggle.engage = AAH_on U
AAH_state.toggle.engage = pressed_once &
IAAH_state.toggle.engage = AAH_on]);

DEFINE
off _to_closing_path :=
AG (AAH_state.toggle.engage = AAH_off
-> | E [IAAH_state.toggle.engage = AAH_closing U
AAH_state.toggle.engage = pressed_twice &
IAAH_state.toggle.engage = AAH_closing]);

DEFINE
AAH_started_exit :=
AG (AAH_state.toggle.engage = AAH_started
-> | E [Iswitches.AAH = button_up U
I(AX AAH_state.toggle.engage = AAH_started) &
Iswitches.AAH = button_up]);

DEFINE
pressed_once_exit :=
AG (AAH_state.toggle.engage = pressed_once

www.manaraa.com

81

-> | E [Iswitches.AAH = button_up U

I(AX AAH_state.toggle.engage = pressed_once) &
Iswitches.AAH = button_up]);

P23: DEFINE
pressed_twice_exit :=
AG (AAH_state.toggle.engage = pressed_twice
-> | E [Iswitches.AAH = button_up U

I(AX AAH_state.toggle.engage = pressed_twice) &
Iswitches.AAH = button_up]);

P24: DEFINE
no_rot_no_ignore_roll :=
AG (AAH_state.toggle.engage = AAH_off &

(AX AAH_state.toggle.engage = AAH_started) &
rot_grip.roll = ZERO

-> | E [I(AX AAH_state.toggle.engage = AAH_off) U
(AX AAH_state.ignore_ HCM.roll) &
I(AX AAH_state.toggle.engage = AAH_off)]);

P25: DEFINE
rot_cmd_ignore_roll :=
AG (AAH_state.toggle.engage = AAH_off &

(AX AAH_state.toggle.engage = AAH_started) &
I(rot_grip.roll = ZERO)

-> | E [I(AX AAH_state.toggle.engage = AAH_off) U

I(AX AAH_state.ignore_HCM.roll) &

I(AX AAH_state.toggle.engage = AAH_off)]);

P26: DEFINE
ignore_stays_on_starting_roll :=
AG (AAH_state.toggle.engage = AAH_started &
(AX AAH_state.ignore_HCM.roll)
-> | E [!(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started)) U
I(AX AAH_state.ignore_ HCM.roll) &

I(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started))]);

P27: DEFINE
ignore_stays_off starting_roll :=
AG (AAH_state.toggle.engage = AAH_started &
I(AX AAH_state.ignore_ HCM.roll)
-> | E [!(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started)) U
(AX AAH_state.ignore_ HCM.roll) &
I(AAH_state.toggle.engage = AAH_off &
(AX AAH_state.toggle.engage = AAH_started))]);

www.manaraa.com

82

P28: DEFINE
rot_cmd_inactive_roll :=
AG (!(AAH_state.toggle.engage = AAH_off) &
AAH_state.active_axes.roll &
IAAH_state.ignore_ HCM.roll &
I(rot_grip.roll = ZERO)
-> | E [I(AX AAH_state.toggle.engage = AAH_off) U
(AX AAH_state.active_axes.roll) &
I(AX AAH_state.toggle.engage = AAH_off)]);

P29: DEFINE

active_until_rot_cmd_roll :=

AG (!(AAH_state.toggle.engage = AAH_off) &
AAH_state.active_axes.roll &

IAAH_state.ignore_ HCM.roll

-> L E [I((AX AAH_state.toggle.engage = AAH_off) |
I(rot_grip.roll = ZERO)) U
I(AX AAH_state.active_axes.roll) &
I((AX AAH_state.toggle.engage = AAH_off) |

I(rot_grip.roll = ZERO))]);

P30: DEFINE
closing_path_duration :=
AG (AAH_state.toggle.engage = AAH_on &
(AX AAH_state.toggle.engage = pressed_once)
-> | E [((AX AAH_state.toggle.engage = pressed_once) |
(AX AAH_state.toggle.engage = AAH_closing)) U
I((AX AAH_state.toggle.engage = AAH_closing)
-> I(AX AAH_state.timeout = 0)) &
((AX AAH_state.toggle.engage = pressed_once) |
(AX AAH_state.toggle.engage = AAH_closing))]);

CMU-SMV Model for Base-SAFER

MODULE HCMSwitches
VAR
MODE: {ROT, TRAN};
AAH: {buttonUp, buttonDown};

MODULE rotCommand
VAR
roll: {NEG, ZERO, POS};
pitch: {NEG, ZERO, POS};
yaw: {NEG, ZERO, POS};

MODULE tranCommand(rotGrip)
VAR

www.manaraa.com

83

XAcc: {NEG, ZERO, POS};
YAcc: {NEG, ZERO, POS};
ZAcc: {NEG, ZERO, POS};
XAccEffect: {NEG, ZERO, POS};
YAccEffect: {NEG, ZERO, POS};
ZAccEffect: {NEG, ZERO, POS};
noRotCmd : boolean;
ASSIGN
XAccEffect :=
case !(noRotCmd) : ZERO;
noRotCmd : XAcc;
1 : ZERO;
esac;
YAccEffect :=
case !(noRotCmd) : ZERO;
I(XAcc = ZERO) : ZERO;
1 : YAcc;
esac;
ZAccEffect :=
case !(noRotCmd) : ZERO;
I(XAcc = ZERO) | !(YAcc = ZERO) : ZERO;
1 : ZAcgc;
esac;
noRotCmd := (rotGrip.roll = ZERO) & (rotGrip.pitch = ZERO) & (rotGrip.yaw = ZERO);

MODULE main
VAR
switches : HCMSwitches;
rotGrip : rotCommand;
tranGrip : tranCommand(rotGrip);

CMU-SMV Model for Base-SAFER-Cruise

--Model file for Base-SAFER-Cruise

MODULE HCMSwitches
VAR
MODE: {ROT, TRAN};
cruise: {buttonUp, buttonDown};

MODULE rotCommand

VAR
roll: {NEG, ZERO, POS};

www.manaraa.com

84

pitch: {NEG, ZERO, POS};
yaw: {NEG, ZERO, POS};

MODULE tranCommand(rotGrip, cruiseState)

VAR
XAcc: {NEG, ZERO, POS};
YAcc: {NEG, ZERO, POS};
ZAcc: {NEG, ZERO, POS};
XAccEffect: {NEG, ZERO, POS};
YAccEffect: {NEG, ZERO, POS};
ZAccEffect: {NEG, ZERO, POS};
predictXAcc: {NEG, ZERO, POS};
predictYAcc: {NEG, ZERO, POS};
predictZAcc: {NEG, ZERO, POS};
noRotCmd: boolean;
noTranCmd: boolean;
noCurStateTranCmd: boolean;

ASSIGN
init(predictXAcc):= ZERO;
init(predictYAcc):= ZERO;
init(predictZAcc):= ZERO;
next(predictXAcc):= XAccEffect;
next(predictYAcc):= YAccEffect;
next(predictZAcc):= ZAccEffect;

XAccEffect :=

case (cruiseState.engage = cruiseOn) & noCurStateTranCmd & noRotCmd: predictXAcc;
(cruiseState.engage = cruiseOn) & !/(noRotCmd): ZERO;
(cruiseState.engage = cruiseOn) & noRotCmd & !(noCurStateTranCmd): XAcc;
I(cruiseState.engage= cruiseOn) & !(noRotCmd) : ZERO;
I(cruiseState.engage= cruiseOn) & noRotCmd : XAcc;
1 : ZERO;

esac;

YAccEffect :
case (cruiseState.engage = cruiseOn) & noCurStateTranCmd & noRotCmd: predictYAcc;
(cruiseState.engage = cruiseOn) & !/(noRotCmd): ZERO;
(cruiseState.engage = cruiseOn) & noRotCmd &!(XAcc = ZERO): ZERO;
(cruiseState.engage = cruiseOn) & noRotCmd & !(noCurStateTranCmd) & (XAcc = ZERO):

YAcc;
I(cruiseState.engage= cruiseOn) & !(noRotCmd) : ZERO;
I(cruiseState.engage= cruiseOn) & !(XAcc = ZERO) : ZERO;
1 : YAcc;
esac;

www.manaraa.com

85

ZAccEffect :=

case (cruiseState.engage = cruiseOn) & noCurStateTranCmd & noRotCmd: predictZAcc;

(cruiseState.engage = cruiseOn) & !/(noRotCmd): ZERO;

(cruiseState.engage = cruiseOn) & noRotCmd & (!(XAcc = ZERO) |!(YAcc = ZERO)): ZERO;
(cruiseState.engage = cruiseOn) & noRotCmd & !(noCurStateTranCmd) & (XAcc = ZERO)

& (YAcc = ZERQ): ZAcc;
I(cruiseState.engage= cruiseOn) & !(noRotCmd) : ZERO;

I(cruiseState.engage= cruiseOn) & !(XAcc = ZERO) | /(YAcc = ZERO) : ZERO;

1 : ZAcc;
esac;

noRotCmd := (rotGrip.roll = ZERO) & (rotGrip.pitch = ZERO) & (rotGrip.yaw = ZERO);
noTranCmd := (XAccEffect = ZERO) & (YAccEffect = ZERO) & (ZAccEffect = ZERO);

noCurStateTranCmd := (XAcc = ZERO) & (YAcc = ZERO) & (ZAcc = ZERO);

MODULE main
VAR
switches : HCMSwitches;
rotGrip : rotCommand;
tranGrip : tranCommand(rotGrip, cruiseState);
cruiseState : cruiseTransition(switches, rotGrip, tranGrip);

MODULE cruiseTransition(switches, rotGrip, tranGrip)

VAR
engage: {cruiseOff, cruiseStarted, cruiseOn};
--anyDirAcc: boolean;

ASSIGN
init(engage) := cruiseOff;
next(engage) := case
switches.cruise = buttonDown : downTransition;
switches.cruise = buttonUp : upTransition;

(engage = cruiseOn) & !(tranGrip.noTranCmd) : cruiseOff;

esac;

DEFINE

downTransition := case

engage = cruiseOff : cruiseStarted;
engage = cruiseStarted : cruiseStarted;
(engage = cruiseOn)& !(tranGrip.noTranCmd): cruiseOff;
1 : engage;
esac;

www.manaraa.com

86

upTransition := case

engage = cruiseOff :cruiseOff;
engage = cruiseStarted :cruiseOn;
(engage = cruiseOn) & !(tranGrip.noTranCmd):cruiseOff;
1 : engage;
esac;

CMU-SMV Model for AAH-SAFER

MODULE main
VAR
switches : HCMSwitches;
rotGrip : rotCommand;
AAHState : AAHTransition(switches, rotGrip);
allAxesOff : boolean;
ASSIGN
allAxesOff := AAHState.toggle.allAxesOff;
DEFINE
maxTicks := AAHState.maxTicks;

MODULE buttonState(switches, active, timeout)
VAR
engage: {AAHOff, AAHStarted, AAHON,
pressedOnce, AAHClosing, pressedTwice};
ASSIGN
init(engage) := AAHOff;
next(engage) := case
switches.AAH = buttonDown: downTransition;
switches.AAH = buttonUp: upTransition;
esac;
DEFINE
downTransition :=
case engage = AAHOff: ~ AAHStarted;
engage = AAHStarted: AAHStarted;
engage = AAHOnN: pressedOnce;
engage = pressedOnce: pressedOnce;
engage = AAHClosing: pressedTwice;
engage = pressedTwice: pressedTwice;
esac;
upTransition :=
case engage = AAHOff: AAHOff;
engage = AAHStarted: AAHOn;
engage = AAHOnN: stateA;
engage = pressedOnce: stateB;
engage = AAHClosing: stateB;

www.manaraa.com

87

engage = pressedTwice: AAHOff;
esac;
stateA := case allAxesOff: AAHOff; 1: AAHOn; esac;
stateB := case timeout <= 0: AAHOn;
1 AAHClosing;
esac;
allAxesOff := I(active.roll | active.pitch | active.yaw);

MODULE AAHTransition(switches, rotCmd)
VAR
activeAxes: rotPredicate;
ignoreHCM: rotPredicate;
toggle: buttonState(switches, activeAxes, timeout);
timeout: 0..100;

ASSIGN
init(timeout) := 0;

next(activeAxes.roll) := starting |
(Y(next(toggle.engage) = AAHOff) &
activeAxes.roll &
(rotCmd.roll = ZERO | ignoreHCM.roll));
next(activeAxes.pitch) := starting |
(Y(next(toggle.engage) = AAHOff) &
activeAxes.pitch &
(rotCmd.pitch = ZERO | ignoreHCM.pitch));
next(activeAxes.yaw) := starting |
(Y(next(toggle.engage) = AAHOff) &
activeAxes.yaw &
(rotCmd.yaw = ZERO | ignoreHCM.yaw));

next(ignoreHCM.roll) :=

case starting: !(rotCmd.roll = ZERO); 1: ignoreHCM.roll; esac;
next(ignoreHCM.pitch) :=

case starting: !(rotCmd.pitch = ZERO); 1: ignoreHCM.pitch; esac;
next(ignoreHCM.yaw) :=

case starting: !(rotCmd.yaw = ZERO); 1:ignoreHCM.yaw; esac;

next(timeout) :=
case toggle.engage = AAHONn &
next(toggle.engage) = pressedOnce : maxTicks;
timeout >0 :timeout - 1;
1 :0;
esac;
DEFINE
maxTicks := 100;
starting := toggle.engage = AAHOff & next(toggle.engage) = AAHStarted;

www.manaraa.com

88

MODULE HCMSwitches
VAR
MODE: {ROT, TRAN};
AAH: {buttonUp, buttonDown};

MODULE rotCommand
VAR
roll: {NEG, ZERO, POS};
pitch: {NEG, ZERO, POS};
yaw: {NEG, ZERO, POS};

MODULE tranCommand(rotGrip)
VAR
XAcc: {NEG, ZERO, POS};
YAcc: {NEG, ZERO, POS};
ZAcc: {NEG, ZERO, POS};
XAccEffect: {NEG, ZERO, POS};
YAccEffect: {NEG, ZERO, POS};
ZAccEffect: {NEG, ZERO, POS};
noRotCmd: boolean;
noTranCmd: boolean;
ASSIGN
XAccEffect :=
case !(noRotCmd) : ZERO;
I(XAcc = ZERO) & noRotCmd : XAcc;
1 : ZERO;
esac;

YAccEffect :=
case !(noRotCmd) : ZERO;
I(XAcc = ZERO) : ZERO;
1 : YAcc;
esac;
ZAccEffect :=
case !(noRotCmd) : ZERO;
I(XAcc = ZERO) | !(YAcc = ZERO) : ZERO;
1 : ZAcc;
esac;
noRotCmd := (rotGrip.roll = ZERO) & (rotGrip.pitch = ZERO) & (rotGrip.yaw = ZERO);
noTranCmd := (XAccEffect = ZERO) & (YAccEffect = ZERO) & (ZAccEffect = ZERO);

MODULE rotPredicate
VAR

roll: boolean;

pitch: boolean;

yaw: boolean;
ASSIGN

init(roll) :=0;

www.manaraa.com

89

init(pitch) := 0;
init(yaw) :=0;
CMU-SMV Model for AAH-SAFER-Cruise
MODULE main
VAR

AAHSwitches : AAHSwitches;

cruiseSwitches : cruiseSwitches;

rotGrip : rotCommand;

tranGrip : tranCommand(rotGrip, cruiseState);

AAHState : AAHTransition(AAHSwitches, rotGrip);

cruiseState : cruiseTransition(cruiseSwitches, rotGrip, tranGrip);
allAxesOff : boolean;

ASSIGN
allAxesOff := AAHState.toggle.allAxesOff;

DEFINE
maxTicks := AAHState.maxTicks;

MODULE buttonState(switches, active, timeout)
VAR
engage: {AAHOff, AAHStarted, AAHON,
pressedOnce, AAHClosing, pressedTwice};
effectAAHState : {AAHON, AAHOff};

ASSIGN
init(engage) := AAHOff;
next(engage) := case
switches.AAH = buttonDown: downTransition;
switches.AAH = buttonUp: upTransition;
esac;
effectAAHState := case
engage = AAHStarted |engage = AAHON |engage = pressedOnce |engage =
AAHClosing |engage = pressedTwice : AAHOn;
engage = AAHOff : AAHOff;
esac;
DEFINE
downTransition :=
case engage = AAHOff: ~ AAHStarted;
engage = AAHStarted: AAHStarted;
engage = AAHOnN: pressedOnce;
engage = pressedOnce: pressedOnce;
engage = AAHClosing: pressedTwice;
engage = pressedTwice: pressedTwice;
esac;

www.manaraa.com

90

upTransition :=
case engage = AAHOff: AAHOff;
engage = AAHStarted: AAHOn;
engage = AAHOnN: stateA;
engage = pressedOnce: stateB;
engage = AAHClosing: stateB;
engage = pressedTwice: AAHOff;
esac;

stateA := case allAxesOff: AAHOff; 1: AAHOn; esac;
stateB := case timeout <= 0: AAHOn;
1 AAHClosing;
esac;

allAxesOff := I(active.roll | active.pitch | active.yaw);

MODULE AAHTransition(switches, rotCmd)
VAR
activeAxes: rotPredicate;
ignoreHCM: rotPredicate;
toggle: buttonState(switches, activeAxes, timeout);
timeout: 0..100;

ASSIGN
init(timeout) := 0;
next(activeAxes.roll) := starting |
(Y(next(toggle.engage) = AAHOff) &
activeAxes.roll &
(rotCmd.roll = ZERO | ignoreHCM.roll));
next(activeAxes.pitch) := starting |
(Y(next(toggle.engage) = AAHOff) &
activeAxes.pitch &
(rotCmd.pitch = ZERO | ignoreHCM.pitch));
next(activeAxes.yaw) := starting |
(Y(next(toggle.engage) = AAHOff) &
activeAxes.yaw &
(rotCmd.yaw = ZERO | ignoreHCM.yaw));

next(ignoreHCM.roll) :=

case starting: !(rotCmd.roll = ZERO); 1: ignoreHCM.roll; esac;
next(ignoreHCM.pitch) :=

case starting: !(rotCmd.pitch = ZERO); 1: ignoreHCM.pitch; esac;
next(ignoreHCM.yaw) :=

case starting: !(rotCmd.yaw = ZERO); 1:ignoreHCM.yaw; esac;

next(timeout) :=
case toggle.engage = AAHON &
next(toggle.engage) = pressedOnce : maxTicks;

www.manaraa.com

91

timeout >0 :timeout - 1;
1 :0;
esac;

DEFINE
maxTicks := 100;
starting := toggle.engage = AAHOff & next(toggle.engage) = AAHStarted;

MODULE AAHSwitches
VAR
MODE: {ROT, TRAN};
AAH: {buttonUp, buttonDown};

MODULE rotCommand
VAR
roll: {NEG, ZERO, POS};
pitch: {NEG, ZERO, POS};
yaw: {NEG, ZERO, POS};

MODULE rotPredicate
VAR

roll: boolean;

pitch: boolean;

yaw: boolean;

ASSIGN
init(roll) :=0;
init(pitch) := 0;
init(yaw) :=0;

MODULE cruiseTransition(cruiseSwitches, rotGrip, tranGrip)

VAR
engage: {cruiseOff, cruiseStarted, cruiseOn};
effectCruiseState : {cruiseOff, cruiseOn};

ASSIGN
init(engage) := cruiseOff;
next(engage) := case
cruiseSwitches.cruise = buttonDown : downTransition;

cruiseSwitches.cruise = buttonUp : upTransition;
(engage = cruiseOn) & !(tranGrip.noTranCmd) : cruiseOff;
esac;

effectCruiseState := case

www.manharaa.com

92

engage = cruiseStarted | engage =cruiseOn : cruiseOn;
engage = cruiseOff: cruiseOff;
esac;

DEFINE

downTransition := case

engage = cruiseOff : cruiseStarted,;
engage = cruiseStarted : cruiseStarted,;
engage = cruiseOn & !(tranGrip.noTranCmd): cruiseOn;
1 : engage;
esac;

upTransition := case

engage = cruiseOff :cruiseOff;
engage = cruiseStarted :cruiseOn;
engage = cruiseOn & !(tranGrip.noTranCmd):cruiseOn;
1 : engage;
esac;

MODULE tranCommand(rotGrip, cruiseState)

VAR
XAcc: {NEG, ZERO, POS};
YAcc: {NEG, ZERO, POS};
ZAcc: {NEG, ZERO, POS};
XAccEffect: {NEG, ZERO, POS};
YAccEffect: {NEG, ZERO, POS};
ZAccEffect: {NEG, ZERO, POS};
predictXAcc: {NEG, ZERO, POS};
predictYAcc: {NEG, ZERO, POS};
predictZAcc: {NEG, ZERO, POS};
noTranCmd : boolean;
noRotCmd : boolean;
noCurStateTranCmd: boolean;

ASSIGN

init(predictXAcc):= ZERO;
init(predictYAcc):= ZERO;
init(predictZAcc):= ZERO;
next(predictXAcc):= XAccEffect;
next(predictYAcc):= YAccEffect;
next(predictZAcc):= ZAccEffect;

XAccEffect :=
case (cruiseState.engage = cruiseOn) & noCurStateTranCmd & noRotCmd: predictXAcc;

www.manaraa.com

93

(cruiseState.engage = cruiseOn) & !/(noRotCmd): ZERO;
(cruiseState.engage = cruiseOn) & noRotCmd & !(noCurStateTranCmd): XAcc;
I(cruiseState.engage= cruiseOn) & !(noRotCmd) : ZERO;
I(cruiseState.engage= cruiseOn) & noRotCmd : XAcc;
1 : ZERO;

esac;

YAccEffect :=
case (cruiseState.engage = cruiseOn) & noCurStateTranCmd & noRotCmd: predictYAcc;
(cruiseState.engage = cruiseOn) & !/(noRotCmd): ZERO;
(cruiseState.engage = cruiseOn) & noRotCmd &!(XAcc = ZERO): ZERO;
(cruiseState.engage = cruiseOn)&noRotCmd&!(noCurStateTranCmd)&(XAcc=ZERO):

YAcc;
I(cruiseState.engage= cruiseOn) & |(noRotCmd) : ZERO;
I(cruiseState.engage= cruiseOn) & !|(XAcc = ZERO) : ZERO;
1 : YAcc;
esac;
ZAccEffect :=
case (cruiseState.engage = cruiseOn) & noCurStateTranCmd & noRotCmd: predictZAcc;
(cruiseState.engage = cruiseOn) & !/(noRotCmd): ZERO;
(cruiseState.engage = cruiseOn) & noRotCmd & (!(XAcc = ZERO) | {(YAcc = ZERO)):
ZERO;

(cruiseState.engage = cruiseOn) & noRotCmd & !(noCurStateTranCmd) & (XAcc = ZERO)
& (YAcc = ZERO): ZAcc;
I(cruiseState.engage= cruiseOn) & !(noRotCmd) : ZERO;
I(cruiseState.engage= cruiseOn) & !(XAcc = ZERO) | !(YAcc = ZERO) : ZERO;
1 : ZAcc; : ZAcc;
esac;

noRotCmd := (rotGrip.roll = ZERO) & (rotGrip.pitch = ZERO) & (rotGrip.yaw = ZERO);
noTranCmd := (XAccEffect = ZERO) & (YAccEffect = ZERO) & (ZAccEffect = ZERO);
noCurStateTranCmd := (XAcc = ZERO) & (YAcc = ZERO) & (ZAcc = ZERO);

MODULE cruiseSwitches
VAR
cruise: {buttonUp, buttonDown};

www.manaraa.com

	2009
	Development and evaluation of Formula Editor (a tool-based approach to enhance reusability in software product line model checking) on SAFER case study
	Sandeep Krishnan
	Recommended Citation

	Microsoft Word - $ASQsupp_2A8BCE1E-29E0-11DE-BCC4-CD2D9E1A67F9.docx

